Skip to main content
Log in

The Effect of Electric Field on RbCl Asymmetric Gaussian Potential Quantum Well Qubit

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We calculate the time evolution and the coordinate change of the quantum mechanical electronic state by using variational method of Pekar type (VMPT) in the presence of strong electron-LO-phonon coupling. The electron is confined in an asymmetric Gaussian potential quantum well (AGPQW) subjected to an applied electric field. The eigenenergies and the eigenfunctions of the ground and the first excited states (GFES) are calculated. A single qubit can be realized in this two-level quantum system. The electron’s probability density oscillates in the AGPQW with a certain period of T 0 = 22.511 fs when the electron is in the superposition state of the GFES. We show that due to the presence of the asymmetrical Gaussian potential in the growth direction of the QW, the electron’s probability density shows one peak in the range of the coordinate z > 0, whereas it equals to zero in the range of z < 0. There is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QW. The oscillating period is an increasing function of the electric field, whereas it is a decreasing one of the height of the AGPQWs and the polaron radius. The oscillating period is a decreasing function of the range of the asymmetric Gaussian confinement potential for R < 0.24 nm, whereas it is an increasing one for R > 0.24 nm. It has a minimum when R = 0.24 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biolatti, E., Iotti, R.C., Zanardi, P., et al.: Phys. Rev. Lett. 85, 5647 (2000)

    Article  ADS  Google Scholar 

  2. Monroe, C.: Nature 416, 238 (2002)

    Article  ADS  Google Scholar 

  3. DiVincenzo, D.P.: Science 270, 255 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. DiVincenzo, D.P.: Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  5. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  6. Simon, D.R.: SIAM J. Comput. 26, 1474 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gorman, J., Hasko, D.G., Williams, D.A.: Phys. Rev. Lett. 95, 090502 (2005)

    Article  ADS  Google Scholar 

  8. Trauzettel, B., Bulaev, D.V., Loss, D., et al.: Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  9. Bianucci, P., Muller, A., Shih, C.K., et al.: Phys. Rev. B 69, 161303 (2004)

    Article  ADS  Google Scholar 

  10. Chen, P., Piermarocchi, C., Sham, L.J., et al.: Phys. Rev. B 69, 075320 (2004)

    Article  ADS  Google Scholar 

  11. Friesen, M., Rugheimer, P., Savage, D.E., et al.: Phys. Rev. B 67, 121301 (2003)

    Article  ADS  Google Scholar 

  12. Piermarocchi, C., Chen, P., Dale, Y.S., et al.: Phys. Rev. B 65, 075307 (2002)

    Article  ADS  Google Scholar 

  13. Mooij, J.E., Orlando, T.P., Levitov, L., et al.: Science 285, 1036 (1999)

    Article  Google Scholar 

  14. Orlando, T.P., Mooij, J.E., Tian, L., et al.: Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  15. Korotkov, A.N.: Nanostructures: Physics and Technology. Ioffe Institute, St Petersburg (2000)

    Google Scholar 

  16. Ruskov, R., Korotkov, A.N.: Phys. Rev. B 66, 041401 (2002)

    Article  ADS  Google Scholar 

  17. Bianucci, P., Muller, A., Shih, C.K., et al.: Phys. Rev. B 69, 161303 (2004)

    Article  ADS  Google Scholar 

  18. Huang, P., Hu, X.: Phys. Rev. B 88, 075301 (2013)

    Article  ADS  Google Scholar 

  19. Xiao, J.L.: Quantum. Inf. Process 12, 3707 (2013)

    Article  ADS  MATH  Google Scholar 

  20. Yu, Y.F., Li, H.J., Yin, J.W.: J. Low Temp. Phys. 173, 282 (2013)

    Article  ADS  Google Scholar 

  21. Yin, J.W., Xiao, J.L., Yu, Y.F., et al.: Chin. Phys. B 18, 446 (2009)

    Article  ADS  Google Scholar 

  22. Schneider, H., Klitzing, K.V.: Phys. Rev. B 38, 6160 (1988)

    Article  ADS  Google Scholar 

  23. Lozykowski, H.J., Shastri, V.K.: J. Appl. Phys. 69, 3235 (1991)

    Article  ADS  Google Scholar 

  24. Zrenner, A., Botuv, L.V., Hagn, M., Abstreiter, G., Bohm, G., Weimann, G.: Phys. Rev. Lett. 72, 3382 (1994)

    Article  ADS  Google Scholar 

  25. Guo, A.X., Du, J.F.: Superlatt. Microstruct. 64, 158 (2013)

    Article  ADS  Google Scholar 

  26. Zhai, W.J.: Phys. B 454, 50 (2014)

    Article  ADS  Google Scholar 

  27. Wu, J.H., Guo, K.X., Liu, G.H.: Phys. B 446, 59 (2014)

    Article  ADS  Google Scholar 

  28. Landau, L.D., Pekar, S.I.: Zh. Eksp. Teor. Fiz. 18, 419 (1948)

    Google Scholar 

  29. Pekar, S.I., Deigen, M.F.: Zh. Eksp. Teor. Fiz. 18, 481 (1948)

    Google Scholar 

  30. Pekar, S.I.: Untersuchungen über die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)

    Google Scholar 

  31. Sun, Y., Ding, Z.H., Xiao, J.L.: J. At. Mol. Sci. 4, 176 (2013)

    Google Scholar 

  32. Ding, Z.H., Sun, Y., Xiao, J.L.: Int. J. Quantum. Inf. 10, 1250077 (2012)

    Article  MathSciNet  Google Scholar 

  33. Devreese, J.T.: Polarons in ionic crystals and polar semiconductors. North-Holland Publ. Co., Amsterdam (1972)

    Google Scholar 

  34. Li, W.P., Yin, J.W., Yu, Y.F., Wang, Z.W., Xiao, J.L.: J. Low Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  35. Wang, Z.W., Xiao, J.L.: Acta Phys. Sin. 56, 0678 (2007)

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China under Grant No.11464033 and 11464034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, JL. The Effect of Electric Field on RbCl Asymmetric Gaussian Potential Quantum Well Qubit. Int J Theor Phys 55, 147–154 (2016). https://doi.org/10.1007/s10773-015-2644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2644-9

Keywords

Navigation