Skip to main content
Log in

Quantum Key Distribution Based on Interferometry and Interaction-Free Measurement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a quantum key distribution based on Mach-Zehnder (MZ) interferometry and interaction-free measurement on single photon. The raw key comes from the photons on which MZ interferometry happened. And the interaction-free measurements are used to detect eavesdroppers. The analysis indicates that the protocol is secure, and can prevent some familiar attacks, such as photon number splitting (PNS) attack. This scheme is easy to be realized in current experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, p. 175C179. IEEE, New York, Bangalore, India (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Koashi, M., Imoto, N.: Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett. 79, 2383–2386 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Guo, G.C., Shi, B.S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256, 109–112 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Yuen, H.P.: In: Tombesi, P., Hirota, O. (eds.) Proceedings of QCMC00, Capri, 2001. Plenum Press, New York (2001)

    Google Scholar 

  7. Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  8. Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process 10(5), 589–602 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51, 2514–2523 (2012)

    Article  MATH  Google Scholar 

  12. Mishra, M.K., Prakash, H.: Bipartite coherent-state quantum key distribution with strong reference pulse. Quantum Inf. Process 12(2), 907–920 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Li, Y.B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process 13(10), 2325–2342 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Fuchs, C.A.: Information gain vs. state disturbance in quantum theory. Fortschr. Phys. 46, 535–565 (1998)

    Article  MathSciNet  Google Scholar 

  15. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  16. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  Google Scholar 

  17. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  18. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  19. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434–0443 (2011)

    MathSciNet  Google Scholar 

  20. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quant. Inf. Proc. 10(3), 317–323 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  22. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. Lect. Notes Comput. Sci. 765, 410 (1994)

    Article  Google Scholar 

  23. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61370188), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477), the Fundamental Research Funds for the Central Universities (Grant No. 328201506), China scholarship council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YB., Xu, SW., Wang, QL. et al. Quantum Key Distribution Based on Interferometry and Interaction-Free Measurement. Int J Theor Phys 55, 98–106 (2016). https://doi.org/10.1007/s10773-015-2636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2636-9

Keywords

Navigation