Skip to main content
Log in

On Some Information-Geometric Aspects of Hawking Radiation as Tunneling

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper illustrates the resemblance between the information-geometric structures of probability spaces and that of the discrete spectrum for Hawking radiation. The information geometry gives rise to a reconstruction of the standard formalism of quantum mechanics, while the discrete spectrum of Hawking radiation contributes to the semiclassical unitary evolution of Hawking radiation. If more realistic models of Hawking radiation are chosen, the information-geometric structures of the probability space for Hawking radiation can be constructed from some physical considerations. The constructed quantum formalism is consistent with both the unitary evolution of Hawking radiation in the semiclassical picture and the topology change of fuzzy horizons. These aspects of Hawking radiation can be connected to some general convictions of quantum gravity such as holography. A comparison with the fuzzball proposal shows the limiation and effectiveness of this construction. We conclude that these information-geometric aspects show some possible ways bridging the gap between semiclassical models and quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  2. Marof, D., Sorkin, R.D.: Phys. Rev. D 66, 104004 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  3. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Class. Quantum Grav. 28, 183001 (2011). and references therein

    Article  MathSciNet  ADS  Google Scholar 

  6. Zhang, B., Cai, Q.Y., You, L., Zhan, M.S.: Phys. Lett. B 675, 98 (2009). Ann. Phys. 326, 350 (2011); and for a review, see Chin. Sci. Bull. 59, 1057 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  7. Corda, C.: JHEP 08, 101 (2011). Int. J. Mod. Phys. D 21, 1242023 (2012); Eur. Phys. J. C 73, 2665 (2013); C. Corda, S. H. Hendi, R. Katebi and N. O. Schmidt, JHEP 06 (2013) 008; Adv. High En. Phys. 527874 (2014); C. Corda, arXiv:1411.1213; and for a comprehensive review, see C. Corda, S. H. Hendi, R. Katebi and N. O. Schmidt, Adv. High En. Phys. 530547 (2014)

  8. Corda, C.: Ann. Phys. 353, 71 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  9. Loll, R.: Living Rev. Relativ. 1, 13 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Unruh, W.G.: 14, 870 (1998)

  11. DeWitt, B.: In General Relativity: An Einstein Centenary Survey. In: Hawking, S.W., Israel, W. (eds.) . Cambridge University Press, Cambridge (1979)

  12. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  13. Louko, J., Satz, A.: Class. Quantum Grav. 23, 6321 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Satz, A.: Class. Quantum Grav 24, 1719 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Martín-Martínez, E., Montero, M., del Rey, M.: Phys. Rev. D 87, 064038 (2013)

    Article  ADS  Google Scholar 

  16. Raine, D.J., Sciama, D.W.: Class. Quantum Grav. 14, A325 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Reginatto, M., Hall, M.J.W.: AIP Conf. Proc. 1443, 96 (2012). AIP Conf. Proc. 1553, 246 (2013); Reginatto, M., arXiv:1312.0429

    Article  ADS  Google Scholar 

  18. ’t Hooft, G.: Class. Quantum Grav. 16, 3263 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. ’t Hooft, G.: Nucl. Phys. B 335, 138 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. Mehrafarin, M.: Int. J. Theor. Phys. 44, 429 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goyal, P.: Phys. Rev. A 78, 052120 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hou, B.-Y., Hou, B.-Y.: Differential Geometry for Physicists. Science Press, Beijing (2004)

    Google Scholar 

  23. Uhlmann, A.: J. Geom. Phys. 18, 76 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Patrascu, A.: Phys. Rev. D 90, 045018 (2014). arXiv:1410.5291

    Article  ADS  Google Scholar 

  25. Yoon, Y. arXiv:1210.8355v2; for a different perspective, see C. Corda, EJTP 11 27 (2014)

  26. Wootters, W.K.: Phys. Rev. D 23, 357 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  27. Banerjee, R., Majhi, B.R.: Phys. Lett. B 675, 243 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Fukuma, M., Sugishita, S., Sakatani, Y.: Phys. Rev. D 89, 064024 (2014)

    Article  ADS  Google Scholar 

  29. Silva, C.A.S.: Phys. Lett. B 677, 318 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Silva, C.A.S., Landim, R.R.: EPL 96, 100007 (2011)

    Article  Google Scholar 

  31. Karczmarek, J.L., Sabella-Garnier, P.: JHEP 03, 129 (2014)

    Article  ADS  Google Scholar 

  32. Valtancoli, P.: Mod. Phys. Lett. A 16, 639 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  33. Grosse, H., Rupp, C.W., Strohmaier, A.: J. Geom. Phys. 42, 54 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Zizzi, P.A.: Mod. Phys. Lett. A 20, 645 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Blasone, M., Jizba, P., Kleinert, H.: Ann. Phys. 320, 468 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Mathur, S.D. arXiv:0810.4525

  37. Mathur, S.D., Turton, D.: Nucl. Phys. B 884, 566 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  38. Mathur, S.D.: Class. Quantum Grav. 26, 224001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Zhiqiang Huang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Kan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XK. On Some Information-Geometric Aspects of Hawking Radiation as Tunneling. Int J Theor Phys 54, 3699–3709 (2015). https://doi.org/10.1007/s10773-015-2606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2606-2

Keywords

Navigation