Skip to main content
Log in

Heat Current and Quantum Correlation Subject to the Nonequilibrium Squeezed Reservoirs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analytically solve the steady-state model of the two interacted qubits respectively coupling to the nonequilibrium squeezed reservoir. This allows us to study the quantum entanglement, the local quantum uncertainty and the heat current easily. It is shown that the squeezing can effectively control the heat current between the two-qubit system and the reservoir. The large squeezing reduces the nonequilibrium concurrence but the local quantum uncertainty could be increased at low temperature by the squeezing in the asymmetric case. Meanwhile, we show that the same heat current could correspond to various values of entanglement and local quantum uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gemma, G., Michel, M., Michel, G.: Quantum Thermodynamics. Springer, New York (2002)

    Google Scholar 

  2. Gyftopoulos, E.P., Beretta, G.P.: Thermodynamics: Foundations and Applications. Dover, New York (2005)

    Google Scholar 

  3. Allahverdyan, A.E., Ballian, R., Nieuwenhuizen, Th.M.: J. Mod. Opt. 51, 2703 (2004)

    Article  ADS  MATH  Google Scholar 

  4. Cohen-Tannoudji, C., et al.: Atom-Photon Interactions: Basic Processes and Applications. Wiley, New York (1992)

    Google Scholar 

  5. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. Breuer H.P., et al.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  7. Scala, M., Migliore, R., Messina, A.: e-print arXiv:0806.4852

  8. Datta, A., Flammia, S.T., Caves, C.M.: Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  9. Datta, A., Vidal, G.: Phys. Rev. A 75, 042310 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  11. Kenigsberg, D., Mor, T., Ratsaby, G.: Quant. Inf. Comput. 6, 606 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  13. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  15. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  16. Dakić, B., Vedral, V., Brukner, Č.: Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  17. Luo, S.-L.: Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  18. Luo, S.-L., Fu, S.-S.: Phys. Rev. A. 82, 034302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Modi, M., Aharon, B., Hugo, C., Tomasz, P., Vlatko, V.: Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  20. Girolami, D., Tufarelli, T., Adesso, G.: Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  21. Yu, C.-S., Wu, S.-X., Wang, X.-G., Yi, X.X., Song, H.-S.: EPL 107, 10007 (2014)

    Article  ADS  Google Scholar 

  22. Giovannetti, V., Lloyd, S., Maccone, L.: Phys. Rev. Lett. 96, 010401 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  24. Wang, X.: Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  25. Wang, X., et al.: Eur. Phys. J. D 18, 285 (2002)

    Google Scholar 

  26. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  27. Canosa, N., Rossignoli, R.: Phys. Rev. A. 73, 022347 (2006)

    Article  ADS  Google Scholar 

  28. Sinaysky, I., Petruccione, F., Burgarth, D.: Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  29. Quiroga, L., Rodríguez, F.J., Ramírez, M.E., París, R.: Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  30. Huang, X.L., Guo, J.L., Yi, X.X.: Phys. Rev. A. 80, 054301 (2009)

    Article  ADS  Google Scholar 

  31. Wu, L.-A., Segal, Dvira: Phys. Rev. A 84, 012319 (2011)

    Article  ADS  Google Scholar 

  32. Reina, J.H., Quiroga, L., Johnson, N.F.: Phys. Rev. B 62, R2267(R) (2000)

    Article  ADS  Google Scholar 

  33. Imamoğlu, A., Knill, E., Tian, L., Zoller, P.: Phys. Rev. Lett. 91, 017402 (2003)

    Article  ADS  Google Scholar 

  34. Khaetskii, A., Loss, D., Glazman, L.: Phys. Rev. B. 67, 195329 (2003)

    Article  ADS  Google Scholar 

  35. Coish, W.A., Loss, D.: Phys. Rev. B 72, 125337 (2005)

    Article  ADS  Google Scholar 

  36. Storcz, M.J., Wilhelm, F.K.: Phys. Rev. A 67, 042319 (2003)

    Article  ADS  Google Scholar 

  37. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  38. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

  39. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  40. Wootters, W.K.: Quant. Inf. Comput. 1, 27–44 (2002)

    MathSciNet  Google Scholar 

  41. Kavan, M., et al.: e-print arXiv:1112.6238v1

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, under Grants No.11375036 and No. 11175033 and the Xinghai Scholar Cultivation Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, Cs. Heat Current and Quantum Correlation Subject to the Nonequilibrium Squeezed Reservoirs. Int J Theor Phys 54, 2942–2951 (2015). https://doi.org/10.1007/s10773-015-2529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2529-y

Keywords

Navigation