Skip to main content
Log in

Multiply Degenerate Exceptional Points and Quantum Phase Transitions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The realization of a genuine phase transition in quantum mechanics requires that at least one of the Kato’s exceptional-point parameters becomes real. A new family of finite-dimensional and time-parametrized quantum-lattice models with such a property is proposed and studied. All of them exhibit, at a real exceptional-point time t = 0, the Jordan-block spectral degeneracy structure of some of their observables sampled by Hamiltonian H(t) and site-position Q(t). The passes through the critical instant t = 0 are interpreted as schematic simulations of non-equivalent versions of the Big-Bang-like quantum catastrophes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mostafazadeh, A.: Int. J. Geom. Meth. Mod. Phys 7, 1191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caliceti, E., Graffi, S.: In: Bagarello, F., et al (eds.) Nonselfadjoint operators in quantum physics: mathematical aspects, p. 183. Wiley, Hoboken (2015). in print

    Google Scholar 

  3. Bender, C.M.: Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  4. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1966)

    Book  MATH  Google Scholar 

  5. Keldysh, M.V.: Russian Math. Surveys 26, 15 (1971)

    Article  ADS  MATH  Google Scholar 

  6. Borisov, D.: Acta Polytechnica 54, 93 (2014)

    Article  Google Scholar 

  7. Heiss, W.D.: J. Phys. A: Math. Theor. 45, 444016 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Joglekar, Y.N., Thompson, C., Scott, D.D., Vemuri, G.: Eur. Phys. J. Appl. Phys. 63, 30001 (2013)

    Article  ADS  Google Scholar 

  9. Tanaka, A., Kim, S.W., Cheon, T.: Phys. Rev. E 89, 042904 (2014)

    Article  ADS  Google Scholar 

  10. Fuchs, J., Main, J., Cartarius, H., Wunner, G.: J. Phys. A: Math. Theor. 47, 125304 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bagarello, F., Gargano, F.: Phys. Rev. A 89, 032113 (2014)

  12. Rotter, I.: J. Phys. A: Math. Theor. 42, 153001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  14. Bender, C.M., Boettcher, S.: Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Turbiner, A.: Private communication (2000)

  16. Scholtz, F.G., Geyer, H.B., Hahne, F.J. W.: Ann. Phys. (NY) 213, 74(1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Znojil, M.: Phys. Rev. D 78, 085003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Znojil, M.: SIGMA 5, 001 (2009). arXiv overlay: arXiv0901.0700

    MathSciNet  Google Scholar 

  19. Znojil, M., Geyer, H.B.: Fort. D. Physik 61, 111 (2013)

    Article  ADS  Google Scholar 

  20. Mostafazadeh, A.: J. Phys. A: Math. Gen. 39, 10171 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Znojil, M.: Ann. Phys. (NY) 336, 98 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Longhi, S.: Europhys. Lett. 106, 3400 (2014)

    Article  Google Scholar 

  23. Smilga, A.V.: Int. J. Theor. Phys. (in print, doi:10.1007/s10773-014-2404-2). arXiv:1409.8450

  24. Znojil, M.: J. Phys. A: Math. Theor. 45, 444036 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  25. Lévai, G., Ruzicka, F., Znojil, M.: Int. J. Theor. Phys. 53, 2875 (2014)

    Article  MATH  Google Scholar 

  26. Znojil, M.: J. Phys. A: Math. Gen. 39, 441 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Znojil, M.: Phys. Lett. A 353, 463 (2006)

    Article  ADS  Google Scholar 

  28. Znojil, M.: J. Phys. A: Math. Gen. 39, 4047 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Znojil, M.: Phys. Rev. D. 80, 045022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Znojil, M.: Phys. Rev. D. 80, 045009 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. Znojil, M.: Phys. Lett. A 375, 3176 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Znojil, M.: J. Phys.: Conf. Ser. 343, 012136 (2012)

    ADS  Google Scholar 

  33. Znojil, M.: J. Phys. A: Math. Theor. 40, 4863 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Znojil, M.: J. Phys. A: Math. Theor. 40, 13131 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Znojil, M.: J. Phys. A: Math. Theor. 41, 244027 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  36. Znojil, M.: J. Phys. A: Math. Theor. 45, 085302 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  37. Gurzadyan, V.G., Penrose, R.: Eur. Phys. J. Plus 128, 22 (2013)

    Article  Google Scholar 

  38. Mostafazadeh, A.: Phil. Trans. R. Soc. A 371, 20120050 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  39. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra - the Behavior of Nonnormal Matrices. Princeton University Press, Princeton (2005)

    Google Scholar 

  40. Krejcirik, D., Siegl, P., Tater, M., Viola, J: Pseudospectra in non-Hermitian quantum mechanics. arXiv: 1402.1082

Download references

Acknowledgments

D.B. was partially supported by grant of RFBR, grant of President of Russia for young scientists-doctors of sciences (MD-183.2014.1) and Dynasty fellowship for young Russian mathematicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Znojil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, D.I., Ružička, F. & Znojil, M. Multiply Degenerate Exceptional Points and Quantum Phase Transitions. Int J Theor Phys 54, 4293–4305 (2015). https://doi.org/10.1007/s10773-014-2493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2493-y

Keywords

Navigation