Skip to main content
Log in

Conserved Quantities and Adiabatic Invariants for El-Nabulsi’s Fractional Birkhoff System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on El-Nabulsi-Birkhoff fractional equations, Lie symmetry and the Hojman conserved quantity, the Noether conserved quantity deduced indirectly by the Lie symmetry and adiabatic invariants of Lie symmetrical perturbation are studied under the framework of El-Nabulsi’s fractional model. Firstly, Lie symmetry and the Hojman conserved quantity are obtained, including the equations of motion of EI-Nabulsi’s fractional Birkhoff system, the determining equations of Lie symmetry for the system and the generalization of the Hojman theorem. Secondly, the Noether conserved quantity deduced indirectly by the Lie symmetry is obtained. Thirdly, the adiabatic invariants of Lie symmetrical perturbation for disturbed EI-Nabulsi’s fractional Birkhoff system is achieved, including the disturbed El-Nabulsi-Birkhoff fractional equations, the determining equations of Lie symmetrical perturbation and adiabatic invariants for disturbed El-Nabulsi’s fractional Birkhoff system. Fourthly, adiabatic invariants and exact invariants under the special ifinitesimal transformations are presented. Finally, the Hojman-Urrutia problem is discussed to illustrate the application of these methods and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)

    MATH  Google Scholar 

  2. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  3. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoff systems. Beijing Institute of Technology, Beijing (1996)

    Google Scholar 

  4. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu systems. UFN, Moscow (1997). (in Russian)

    Google Scholar 

  5. El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fiz. A 14(4), 289–298 (2005)

    MATH  Google Scholar 

  6. El-Nabulsi, A.R., Torres, D.F.M.: Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β). Math. Methods Appl. Sci. 30(15), 1931–1939 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. El-Nabulsi, A.R., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys 49, 053521 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. El-Nabulsi, A.R.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos, Solitons Fractals 42(1), 52–61 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Herzallah, M.A.E., Muslih, S.I., Baleanu, D., Rabei, E.M.: Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dyn. 66(4), 549–555 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. El-Nabulsi, A.R., Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator. Cent. Eur. J. Phys. 9(1), 250–256 (2011)

    Google Scholar 

  11. Zhang, Y., Zhou, Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. 73(1-2), 783–793 (2013)

    Article  MATH  Google Scholar 

  12. Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gött. Math. Phys. KI. II2, 235–257 (1918)

    Google Scholar 

  13. Djukić, D.S., Vujanović, B.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23(1-2), 17–27 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Bahar, L.Y., Kwatny, H.G.: Extension of Noether’s theorem to constrained nonconservative dynamical systems. Int. J. Non-Linear Mech. 22(2), 125–138 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Li, Z.P.: The transformation properties of constrained system. Acta Phys. Sin. 30(12), 1659–1671 (1981)

    Google Scholar 

  16. Liu, D.: Noether’s theorem and its inverse for nonholonomic nonconservative dynamical systems. Sci. China Ser. A 34(4), 419–429 (1991)

    MathSciNet  ADS  MATH  Google Scholar 

  17. Mei, F.X.: The Noether’s theory of Birkhoffian systems. Sci. China Ser. A 36(12), 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Miron, R.: Noether theorem in higher-order Lagrangian mechanics. Int. J. Theor. Phys. 34(7), 1123–1146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarlet, W., Crampin, M.: A characterization of higher-order Noether symmetries. J. Phys. A: Math. Gen. 18, L563–L565 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Liu, D.: Noether theorem and its converse for nonholonomic conservative dynamical systems. Sci. China Ser. A 20(11), 1189–1197 (1991)

    ADS  Google Scholar 

  21. Mei, F.X.: Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing Institute of Technology, Beijing (2004)

    Google Scholar 

  22. Zhang, Y., Mei, F.X.: Noether’s theory of mechanical systems with unilateral constraints. Appl. Math. Mech. 21(1), 59–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, S.K.: Generalized Noether theorem of noholonomic nonpotential system in noninertial reference frame. Appl. Math. Mech. 12(9), 927–934 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marwat, D.N.K., Kara, A.H., Mahomed, F.M.: Symmetries, conservation laws and multipliers via partial Lagrangians and Noether’s theorem for classically non-variational problems. Int. J. Theor. Phys. 46(12), 3022–3029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shamir, M.F., Jhangeer, A., Bhatti, A.A.: Killing and Noether symmetries of plane symmetric spacetime. Int. J. Theor. Phys 52, 3106–3117 (2013)

    Article  MathSciNet  Google Scholar 

  26. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frederico, G.S.F.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3(10), 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Long, Z.X., Zhang, Y.: Fractional Noether Theorem based on extended exponentially fractional integral. Int. J. Theor. Phys. 53, 841–855 (2014)

    Article  MathSciNet  Google Scholar 

  30. Long, Z.X., Zhang, Y.: Noether’s theorems for fractional variational problem from EI-Nabulsi extended exponentially fractional integral in phase space. Acta Mech. 225(1), 77–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y.: Noether symmetries and conserved quantities for fractional action-like variational problems in phase space. Acta Sci. Nat. Univ. Sunyatsen 52(4), 20–25 (2013)

    Google Scholar 

  32. Malinowska, A.B.: A formulation of the fractional Noether-Type theorem for multidimentional Lagrangians. Appl. Math. Lett. 25(11), 1941–1946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  34. Zhou, S., Fu, H., Fu, J.L.: Symmetry theorems of Hamiltonian systems with fractional derivatives. China Phys. Mech. Astron. 54(10), 1847–1853 (2011)

    Article  Google Scholar 

  35. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Atanacković, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives:Invariance conditions and Noether’s theorem. Nonlinear Anal. 71(5-6), 1504–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A: Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Prince, G.E., Eliezer, C.J.: On the Lie symmetries of the classical Kepler problem. J. Phys. A: Math. Gen. 14, 587–596 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Zhao, Y.Y.: Conservative quantities and Lie symmetries of nonconservative dynamical systems. Acta Mech. Sin. 26, 380–384 (1994)

    MATH  Google Scholar 

  40. Mei, F.X.: Applications of Lie groups and Lie algebras to constrained mechanical systems. Science Press, Beijing (1999)

    Google Scholar 

  41. Hojman, S.A.: A new conservation law constructed without using either Lagrangians and Hamiltonians. J. Phys. A Math. Gen. 25, L291-L295 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Mei, F.X., Wu, H.B.: Dynamics of Constrained Mechanical Systems. Beijing Institute of Technology, Beijing (2009). (in English)

    Google Scholar 

  43. Mei, F.X.: The Applications of Lie Group and Lie Algebra for Constrained Mechanical Systems (1999). (in Chinese)

  44. Burgers, J.M.: Die adiabatischen invarianten bedingt periodischer systems. Ann. Phys. 357(2), 195–202 (1917)

    Article  Google Scholar 

  45. Notte, J., Fajans, J., Chu, R., Wurtele, J.S.: Experimental breaking of an adiabatic invariant. Phys. Rev. Lett. 70, 3900–3903 (1993)

    Article  ADS  Google Scholar 

  46. Bulanov, S.V., Shasharina, S.G.: Behaviour of adiabatic invariant near the separatrix in a stellarator. Nucl. Fusion 32(9), 1531–1543 (1992)

    Article  ADS  Google Scholar 

  47. Zhang, M.J., Fang, J.H., Lu, K: Perturbation to Mei symmetry and generalized Mei adiabatic invariants for Birkhoffian systems. Int. J. Theor. Phys 49, 427–437 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Y.: Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoffian systems. Bull. Sci. Technol. 26(4), 477–481 (2010)

    Google Scholar 

  49. Zhang, Y.: Perturbation to Lie symmetries and adiabatic invariants for generalized Birkhoffian systems. Bull. Sci. Technol. 27(3), 311–317 (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant Nos.10972151 and 11272227), and the Innovation Program for Scientific Research of Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, CJ., Zhang, Y. Conserved Quantities and Adiabatic Invariants for El-Nabulsi’s Fractional Birkhoff System. Int J Theor Phys 54, 2481–2493 (2015). https://doi.org/10.1007/s10773-014-2475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2475-0

Keywords

Navigation