Skip to main content
Log in

Greenberger-Horne-Zeilinger Entanglement of Six Separated Resonators via Concurrent Parametric Down-Conversion

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present an alternative scheme for generating six-partite continuous variable Greenberger-Horne-Zeilinger entanglement of the separated resonators that are interconnected by two driven three-level Δ-type superconducting qubits. We find that the concurrent parametric interactions, which decoupled from the degrees of freedom of the superconducting qubit, could occur among six distant resonators via adjusting the detunings, Rabi frequencies and coupling constants. It is based on such a nonlinear interaction that six separated resonators are pulled into a stable entangled state, which is independent of the original state of the qubits and is also insensitive to their decoherence. The root of entanglement generation is attributed to the coherently induced parametric interactions that exist simultaneously among six distant resonators. The scheme we present will provide a promising method for the scalable quantum information processing with continuous variables in the solid-state system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Horne, A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. van Loock, P., Furusawa, A.: Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003)

    Article  ADS  Google Scholar 

  4. Jing, J.T., Zhang, J., Yan, Y., Zhao, F.G., Xie, C.D., Peng, K.C.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  5. Aoki, T., Takei, N., Yonezawa, H., Wakui, K., Hiraoka, T., Furusawa, A., van Loock, P.: Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett. 91, 080404 (2003)

    Article  ADS  Google Scholar 

  6. Su, X.L., Tan, A.H., Jia, X.J., Zhang, J., Xie, C.D., Peng, K.C.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  7. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature(London) 431, 430–433 (2004)

    Article  ADS  Google Scholar 

  8. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  9. McKinstrie, C.J., van Enk, S.J., Raymer, M.G., Radic, S.: Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber. Opt. Express 16, 2720–2739 (2008)

    Article  ADS  Google Scholar 

  10. Midgley, S.L.W., Bradley, A.S., Pfister, O., Olsen, M.K.: Quadripartite continuous-variable entanglement via quadruply concurrent down-conversion. Phys. Rev. A 81, 063834 (2010)

    Article  ADS  Google Scholar 

  11. Leng, H.Y., Wang, J.F., Yu, Y.B., Yu, X.Q., Xu, P., Xie, Z.D., Zhao, J.S., Zhu, S.N.: Scheme to generate continuous-variable quadripartite entanglement by intracavity down-conversion cascaded with double sum-frequency generations. Phys. Rev. A 79, 032337 (2009)

    Article  ADS  Google Scholar 

  12. Gu, Y., He, G.Q., Wu, X.F.: Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions. Phys. Rev. A 85, 052328 (2012)

    Article  ADS  Google Scholar 

  13. van Loock, P., Braunstein, S.L.: Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)

    Article  ADS  Google Scholar 

  14. Zhang, J., Xie, C.D., Peng, K.C.: Controlled dense coding for continuous variables using three-partite entangled states. Phys. Rev. A 66, 032318 (2002)

    Article  ADS  Google Scholar 

  15. Zhang, J., Xie, C.D., Peng, K.C.: Continuous-variable quantum-information distributor: Reversible telecloning. Phys. Rev. A 73, 042315 (2006)

    Article  ADS  Google Scholar 

  16. Xiong, H., Scully, M.O., Zubairy, M.S.: Correlated spontaneous emission laser as an entanglement amplifier. Phys. Rev. Lett. 94, 023601 (2005)

    Article  ADS  Google Scholar 

  17. Hu, X.M., Zou, J.H.: Quantum-beat lasers as bright sources of entangled sub-Poissonian light. Phys. Rev. A 78, 045801 (2008)

    Article  ADS  Google Scholar 

  18. Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing. Phys. Rev. A 69, 063803 (2004)

    Article  ADS  Google Scholar 

  19. Li, G.X., Ke, S.S., Ficek, Z.: Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity. Phys. Rev. A 79, 033827 (2009)

    Article  ADS  Google Scholar 

  20. Yang, X.X., Wu, Y.: Achieving ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in double-Lambda system. J. Opt. B 7, 54–56 (2005)

    Article  ADS  Google Scholar 

  21. Pielawa, S., Morigi, G., Vitali, D., Davidovich, L.: Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir. Phys. Rev. Lett. 98, 240401 (2007)

    Article  ADS  Google Scholar 

  22. Lü, X.Y., Huang, P., Yang, W.X., Yang, X.X.: Entanglement via atomic coherence induced by two strong classical fields. Phys. Rev. A 80, 032305 (2009)

    Article  ADS  Google Scholar 

  23. Tang, Z.H., Li, G.X., Ficek, Z.: Entanglement created by spontaneously generated coherence. Phys. Rev. A 82, 063837 (2010)

    Article  ADS  Google Scholar 

  24. Wu, Y., Deng, L.: Achieving multifrequency mode entanglement with ultraslow multiwave mixing. Opt. Lett 29, 1144–1146 (2004)

    Article  ADS  Google Scholar 

  25. Yang, X.H., Zhou, Y.Y., Xiao, M.: Generation of multipartite continuous-variable entanglement via atomic spin wave. Phys. Rev. A 85, 052307 (2012)

    Article  ADS  Google Scholar 

  26. Guzmán, R., Retamal, J.C., Solano, E., Zagury, N.: Field squeeze operators in optical cavities with atomic ensembles. Phys. Rev. Lett. 96, 010502 (2006)

    Article  ADS  Google Scholar 

  27. Hu, X.M., Li, X.: Quantum interference in enhanced parametric interactions. J. Phys. B 43, 055502 (2010)

    Article  ADS  Google Scholar 

  28. Liang, X., Hu, X.M., He, C.: Creating multimode squeezed states and Greenberger-Horne-Zeilinger entangled states using atomic coherent effects. Phys. Rev. A 85, 032329 (2012)

    Article  ADS  Google Scholar 

  29. Sun, H.: Generation of multimode squeeze operators and multipartite entangled states for continuous variables. Phys. Rev. A 89, 043823 (2014)

    Article  ADS  Google Scholar 

  30. Cheng, G.L., Chen, A.X., Zhong, W.X.: Tripartite entanglement of microwave radiation via nonlinear parametric interactions enhanced by quantum interference in superconducting quantum circuits. J. Opt. Soc. Am. B 30, 2875–2881 (2013)

    Article  ADS  Google Scholar 

  31. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-Junction devices. Rev. Mod. Phys 73, 357–400 (2001)

    Article  ADS  Google Scholar 

  32. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys 85, 623–653 (2013)

    Article  ADS  Google Scholar 

  33. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A. Jr., Pashkin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

    Article  ADS  Google Scholar 

  34. Kelly, W.R., Dutton, Z., Schlafer, J., Mookerji, B., Ohki, T.A., Kline, J.S., Pappas, D.P.: Direct observation of coherent population trapping in a superconducting artificial atom. Phys. Rev. Lett. 104, 163601 (2010)

    Article  ADS  Google Scholar 

  35. Sun, H.C., Liu, Y.X., Ian, H., You, J.Q., Il’ichev, E., Nori, F.: Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuit. Phys. Rev. A 89, 063822 (2014)

    Article  ADS  Google Scholar 

  36. Leung, P.M., Sanders, B.C.: Coherent control of microwave pulse storage in superconducting circuits. Phys. Rev. Lett. 109, 253603 (2012)

    Article  ADS  Google Scholar 

  37. Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)

    Article  ADS  Google Scholar 

  38. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connel, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    Article  ADS  Google Scholar 

  39. Su, Q.P., Yang, C.P., Zheng, S.B.: Fast and simple scheme for generating NOON states of photons in circuit QED. Scientific Reports 4, 3898 (2014)

    ADS  Google Scholar 

  40. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.Y.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)

    Article  ADS  Google Scholar 

  41. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  42. Lu, N.: Quantum theory of correlated-emission lasers: Vacuum state for the mode of the relative phase and the relative amplitude. Phys. Rev. A 45, 8154 (1992)

    Article  ADS  Google Scholar 

  43. James, D.F.V.: Quantum computation with hot and cold Ions: An assessment of proposed schemes. Fortschr. Phys 48, 823–837 (2000)

    Article  Google Scholar 

  44. Manucharyan, V.E., Koch, J., Glazman, L.I., Devoret, M.H.: Fluxonium: single Cooper-Pair circuit free of charge offsets. Science 326, 113–116 (2009)

    Article  ADS  Google Scholar 

  45. Joo, J., Bourassa, J., Blais, A., Sanders, B.C.: Electromagnetically induced transparency with amplification in superconducting circuits. Phys. Rev. Lett. 105, 073601 (2010)

    Article  ADS  Google Scholar 

  46. Sargent III, M. , Scully, M.O., Lamb Jr., W.E : Laser Physics. Addison-Wesley, Massachusetts (1974)

    MATH  Google Scholar 

  47. Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J., Blais, A., Wallraff, A.: Measurement of Autler-Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Our work is supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11365009), the Foundation of Young Scientist of Jiangxi Province, China (Grant No. 20142BCB23011), and the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ13348).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Ling Cheng or Ai-Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, GL., Chen, AX. & Zhong, WX. Greenberger-Horne-Zeilinger Entanglement of Six Separated Resonators via Concurrent Parametric Down-Conversion. Int J Theor Phys 54, 2467–2480 (2015). https://doi.org/10.1007/s10773-014-2474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2474-1

Keywords

Navigation