Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Supersymmetric Model of a Bose-Einstein Condensate in a 𝓟𝓣-Symmetric Double-delta Trap

Abstract

The most important properties of a Bose-Einstein condensate subject to balanced gain and loss can be modelled by a Gross-Pitaevskii equation with an external 𝓟𝓣-symmetric double-delta potential. We study its linear variant with a supersymmetric extension. It is shown that both in the 𝓟𝓣-symmetric as well as in the 𝓟𝓣-broken phase arbitrary stationary states can be removed in a supersymmetric partner potential without changing the energy eigenvalues of the other state. The characteristic structure of the singular delta potential in the supersymmetry formalism is discussed, and the applicability of the formalism to the nonlinear Gross-Pitaevskii equation is analysed. In the latter case the formalism could be used to remove 𝓟𝓣-broken states introducing an instability to the stationary 𝓟𝓣-symmetric states.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Klaiman, S., Günther, U., Moiseyev, N.: Phys. Rev. Lett. 101, 080402 (2008)

  2. 2.

    Dast, D., Haag, D., Cartarius, H., Wunner, G., Eichler, R., Main, J.: Fortschr. Phys. 61, 124 (2013)

  3. 3.

    Graefe, E.M., Korsch, H.J., Niederle, A.E.: Phys. Rev. Lett. 101, 150408 (2008)

  4. 4.

    Bender, C.M., Boettcher, S.: Phys. Rev. Lett. 80, 5243 (1998)

  5. 5.

    Dast, D., Haag, D., Cartarius, H., Main, J., Wunner, G.: J. Phys. A 46, 375301 (2013)

  6. 6.

    Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Phys. Rev. A 82, 043803 (2010)

  7. 7.

    Musslimani, Z., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Phys. Rev. Lett. 100, 30402 (2008)

  8. 8.

    Driben, R., Malomed, B.A.: Opt. Lett. 36, 4323 (2011)

  9. 9.

    Bludov, Y.V., Konotop, V.V., Malomed, B.A.: Phys. Rev. A 87, 013816 (2013)

  10. 10.

    Haag, D., Dast, D., Löhle, A., Cartarius, H., Main, J., Wunner, G.: Phys. Rev. A 89, 023601 (2014)

  11. 11.

    Löhle, A., Cartarius, H., Haag, D., Dast, D., Main, J., Wunner, G.: Acta Polytechnica 54, 133 (2014)

  12. 12.

    Gelfand, Y.A., Likhtman, E.P.: JETP Lett. 13, 323 (1971)

  13. 13.

    Neveu, A., Schwarz, J.H.: Nucl. Phys. B 31, 86 (1971)

  14. 14.

    Ramond, P.: Phys. Rev. D 3, 2415 (1971)

  15. 15.

    Nicolai, H.: J. Phys. A 9, 1497 (1976)

  16. 16.

    Witten, E.: Nucl. Phys. B 188, 513 (1981)

  17. 17.

    Witten, E.: Nucl. Phys. B. 202, 253 (1982)

  18. 18.

    Znojil, M., Cannata, F., Bagchi, B., Roychoudhury, R.: Phys. Lett. B 483, 284 (2000)

  19. 19.

    Znojil, M.: J. Phys. A 35, 2341 (2002)

  20. 20.

    Lévai, G., Znojil, M.: J. Phys. A 35, 8793 (2002)

  21. 21.

    Bazeia, D., Das, A., Greenwood, L., Losano, L.: Phys. Lett. B 673, 283 (2009)

  22. 22.

    Abhinav, K., Panigrahi, P.K.: Ann. Phys. 325, 1198 (2010)

  23. 23.

    Lévai, G.: J. Phys. A 37, 10179 (2004)

  24. 24.

    Bagchi, B., Roychoudhury, R.: J. Phys. A 33, L1 (2000)

  25. 25.

    Midya, B.: Phys. Rev. A. 89, 032116 (2014)

  26. 26.

    Miri, M.A., Heinrich, M., El-Ganainy, R., Christodoulides, D.N.: Phys. Rev. Lett. 110, 233902 (2013)

  27. 27.

    Miri, M.A., Heinrich, M., Christodoulides, D.N.: Phys. Rev. A 87, 043819 (2013)

  28. 28.

    Cartarius, H., Wunner, G.: Phys. Rev. A 86, 013612 (2012)

  29. 29.

    Cartarius, H., Haag, D., Dast, D., Wunner, G.: J. Phys. A 45, 444008 (2012)

  30. 30.

    Jakubský, V., Znojil, M.: Czech. J. Phys. 55, 1113 (2005)

  31. 31.

    Mehri-Dehnavi, H., Mostafazadeh, A., Batal, A.: J. Phys. A 145301, 43 (2010)

  32. 32.

    Jones, H.F.: Phys. Rev. D. 78, 065032 (2008)

  33. 33.

    Mayteevarunyoo, T., Malomed, B.A., Dong, G.: Phys. Rev. A 053601, 78 (2008)

  34. 34.

    Rapedius, K., Korsch, H.J.: J. Phys. B 42, 044005 (2009)

  35. 35.

    Fassari, S., Rinaldi, F.: Rep. Math. Phys. 69, 353 (2012)

  36. 36.

    Uchino, T., Tsutsui, I.: Nucl. Phys. B 662, 447 (2003)

  37. 37.

    Correa, F., Nieto, L.M., Plyushchay, M.S.: Phys. Lett. B 659, 746 (2008)

  38. 38.

    Fernández, D.J., Gadella, C.M., Nieto, L.M.: SIGMA 7, 29 (2011)

Download references

Author information

Correspondence to Holger Cartarius.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abt, N., Cartarius, H. & Wunner, G. Supersymmetric Model of a Bose-Einstein Condensate in a 𝓟𝓣-Symmetric Double-delta Trap. Int J Theor Phys 54, 4054–4067 (2015). https://doi.org/10.1007/s10773-014-2467-0

Download citation

Keywords

  • 𝓟𝓣 symmetry
  • Supersymmetry
  • Double-delta potential
  • Stationary states