International Journal of Theoretical Physics

, Volume 54, Issue 7, pp 2192–2203 | Cite as

A Semiclassical Condition for Chaos Based on Pesin Theorem

  • I. GomezEmail author
  • M. Losada
  • S. Fortin
  • M. Castagnino
  • M. Portesi


A semiclassical method to determine if the classical limit of a quantum system shows a chaotic behavior or not based on Pesin theorem, is presented. The method is applied to a phenomenological Gamow–type model and it is concluded that in the classical limit the dynamics exhibited by its effective Hamiltonian is chaotic.


Pesin theorem Lyapunov exponents Kolmogorov–Sinai entropy Classical limit 



This paper was supported partially by the CONICET (National Research Council, Argentina), the IFIR (Instituto de F´ısica de Rosario, Argentina), the IFLP (Instituto de Fsica de La Plata, Argentina) and Universidad de Buenos Aires, Argentina.

The authors would like to acknowledge the anonymous reviewer for helpful comments on the original manuscript.


  1. 1.
    Alicki, R., Lozinski, A., Pakonski, P., Zyczkowski, K.: Quantum dynamical entropy and decoherence rate. J. Phys. A 37, 5157–5172 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Slomczynski, W., Zyczkowski, K.: Quantum chaos: an entropy approach. J. Math. Phys. 35, 5674–5700 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    Slomczynski, W., Zyczkowski, K.: Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit. Phys. Rev. Lett. 80, 1880–1883 (1998)CrossRefADSGoogle Scholar
  4. 4.
    Zyczkowski, K., Wiedemann, H., Slomczynski, W.: How to generalize Lyapunov exponents for quantum mechanics. Vistas Astron. 37, 153–156 (1993)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Cucchietti, F.M., Dalvit, D.A.R., Paz, J.P., Zurek, W.H.: Decoherence and the Loschmidt Echo. Phys. Rev. Lett. 91, 210403 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Cucchietti, F.M., Pastawski, H.M., Jalabert, R.A.: Universality of the Lyapunov regime of the Loschmidt echo. Phys. Rev. B 70, 035311 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Monteoliva, D., Paz, J.P.: Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems. Phys. Rev. Lett. 85, 3373 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Monteoliva, D., Paz, J.P.: Decoherence in a classically chaotic quantum system: Entropy production and quantum-classical correspondence. Phys. Rev. E. 64, 056238 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Bellot, G., Earman, J.: Studies in History and Philosophy of Modern Physics. Chaos out of order: Quantum mechanics, the correspondence principle and chaos 28, 147–182 (1997)Google Scholar
  10. 10.
    Berkovitz, J., Frigg, R., Kronz, F.: The Ergodic Hierarchy Randomness and Hamiltonian Chaos. Stud. Hist. Philos. Mod. Phys. 37, 661–691 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Berry, M.: Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336 (1989)CrossRefADSzbMATHGoogle Scholar
  12. 12.
    Castagnino, M., Lombardi, O.: Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing. Phys. A 388, 247–267 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gomez, I., Castagnino, M.: Towards a definition of the Quantum Ergodic Hierarchy: Kolmogorov and Bernoulli systems. Phys. A 393, 112–131 (2014)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gomez, I., Castagnino, M.: On the classical limit of quantum mechanics, fundamental graininess and chaos: Compatibility of chaos with the correspondence principle, Chaos. Solitons Fractals 68, 98–113 (2014)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Stockmann, H.: Quantum Chaos: An Introduction, page numbers. Cambridge University Press, Cambridge (1999)Google Scholar
  16. 16.
    Haake, F.: Quantum Signatures of Chaos, page numbers. Springer-Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, page numbers. Springer Verlag, New York (1990)CrossRefGoogle Scholar
  18. 18.
    Casati, G., Chirikov, B.: Quantum Chaos: between order and disorder, page numbers. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  19. 19.
    Tabor, M.: Chaos and Integrability in Nonlinear Dynamics: An Introduction, page numbers. Wiley, New York (1988)Google Scholar
  20. 20.
    Omnès, R.: The Interpretation of Quantum Mechanics, vol. 288. Princeton University, Princeton (1994)Google Scholar
  21. 21.
    Laura, R., Castagnino, M.: Functional approach for quantum systems with continuous spectrum. Phys. Rev. E 57, 3948 (1998)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics (Applied Mathematical Sciences), vol. 304. Springer, Berlin (2010)Google Scholar
  23. 23.
    Pesin, Y.: Characteristic exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Young, L.: Entropy, p 283. Princeton University Press, Princeton (2003)Google Scholar
  25. 25.
    Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121–167 (1984)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Dito, G., Sternheimer, D.: Deformation quantization: genesis, development and metamorphosis. IRMA Lect. Math. Theor. Phys. 1, 9–54 (2002)MathSciNetGoogle Scholar
  27. 27.
    Bayern, F., Flato, M., Fronsdal, M., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II, Physical applications. Ann. Phys. 110, 111–151 (1978)ADSGoogle Scholar
  28. 28.
    Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.: Intrinsic irreversibility of quantum systems with diagonal singularity. Phys. A 241, 737–772 (1997)CrossRefGoogle Scholar
  29. 29.
    Gadella, M., Pronko, G.: Fortschritte der Physik The Friedrichs model and its use in resonance phenomena, 59, 795–859 (2011)Google Scholar
  30. 30.
    Castagnino, M., Fortin, S.: New bases for a general definition for the moving preferred basis. Mod. Phys. Lett. A 26, 2365–2373 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    Ordonez, G., Kim, S.: Complex collective states in a one-dimensional two-atom system. Phys. Rev. A 70, 032702 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Bohm, A.: Quantum mechanics, foundations and applications, pp 549–563. Springer Verlag, Berlin (1986)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gilary, I., Fleischer, A., Moiseyev, N.: Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution. Phys. Rev. A 72, 012117 (2005)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. Gomez
    • 1
    • 2
    Email author
  • M. Losada
    • 3
  • S. Fortin
    • 4
  • M. Castagnino
    • 3
  • M. Portesi
    • 5
  1. 1.Instituto de Física de Rosario (IFIR-CONICET)Santa FeArgentina
  2. 2.Departamento de Física (FCE, Universidad Nacional de La Plata)Instituto de Física La Plata (IFLP)La PlataArgentina
  3. 3.Instituto de Física de Rosario (IFIR-CONICET)Santa FeArgentina
  4. 4.CONICET - Departamento de Física, FCEN (UBA)Buenos AiresArgentina
  5. 5.Instituto de Física de La Plata (CONICET-UNLP)Departamento de Física (FCE, Universidad Nacional de La Plata)La PlataArgentina

Personalised recommendations