Skip to main content
Log in

Singular Mapping for a PT-Symmetric Sinusoidal Optical Lattice at the Symmetry-Breaking Threshold

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A popular PT-symmetric optical potential (variation of the refractive index) that supports a variety of interesting and unusual phenomena is the imaginary exponential, the limiting case of the potential \(V_{0}[\cos (2\uppi x/a)+i\uplambda \sin (2\uppi x/a)]\) as λ → 1, the symmetry-breaking point. For λ<1, when the spectrum is entirely real, there is a well-known mapping by a similarity transformation to an equivalent Hermitian potential. However, as λ→1, the spectrum, while remaining real, contains Jordan blocks in which eigenvalues and the corresponding eigenfunctions coincide. In this limit the similarity transformation becomes singular. Nonetheless, we show that the mapping from the original potential to its Hermitian counterpart can still be implemented; however, the inverse mapping breaks down. We also illuminate the role of Jordan associated functions in the original problem, showing that they map onto eigenfunctions in the associated Hermitian problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender, C.M., Boettcher, S.: Phys. Rev. Lett. 80, 5243 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Dorey, P., Dunning, C., Tateo, R.: J. Phys. A 34, 5679 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Mostafazadeh, A.: J. Math. Phys. 43, 205 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bender, C.M., Kuzhel, S.: J. Phys. A 45, 444005 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  5. Siegl, P., Krejčiřík, D.: Phys. Rev. D 86, 121702 (2012)

  6. El-Ganainy, R., et al.: Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  7. Musslimani, Z., et al.: Phy. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  8. Makris, K., et al.: Phys. Rev. Lett. 100, 103904. (2008); Phys. Rev. A 81, 063807 (2010)

  9. Longhi, S.: Phys. Rev. A 81, 022102 (2010)

    Article  Google Scholar 

  10. Graefe, E-M., Jones, H.F.: Phys. Rev. A 84, 013818 (2011)

    Article  ADS  Google Scholar 

  11. Lin, Z., et al.: Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  12. Longhi, S.: J. Phys. A 44, 485302 (2011)

    Article  MathSciNet  Google Scholar 

  13. Jones, H.F.: J. Phys. A 45, 135306 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  14. Midya, N., Roy, B., Choudhury, R.: Phys. Lett. A 374, 2605 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Jones, H.F.: J. Phys. A 44, 345302 (2011)

    Article  MathSciNet  Google Scholar 

  16. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Tables. Dover, New York (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, H.F. Singular Mapping for a PT-Symmetric Sinusoidal Optical Lattice at the Symmetry-Breaking Threshold. Int J Theor Phys 54, 3986–3990 (2015). https://doi.org/10.1007/s10773-014-2432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2432-y

Keywords

Navigation