Skip to main content
Log in

Global Existence of Solutions to Coupled \(\mathcal {PT}\)-Symmetric Nonlinear Schrödinger Equations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript


We study a system of two coupled nonlinear Schrödinger equations, where one equation includes gain and the other one includes losses. Strengths of the gain and the loss are equal, i.e., the resulting system is parity-time (\(\mathcal {PT}\)) symmetric. The model includes both linear and nonlinear couplings, such that when all nonlinear coefficients are equal, the system represents the \(\mathcal {PT}\)-generalization of the Manakov model. In the one-dimensional case, we prove the existence of a global solution to the Cauchy problem in energy space H 1, such that the H 1-norm of the global solution may grow in time. In the Manakov case, we show analytically that the L 2-norm of the global solution is bounded for all times and numerically that the H 1-norm is also bounded. In the two-dimensional case, we obtain a constraint on the L 2-norm of the initial data that ensures the existence of a global solution in the energy space H 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  1. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  2. Driben, R., Malomed, B.A.: Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323 (2011)

    Article  ADS  Google Scholar 

  3. Abdullaev, F.K., Konotop, V.V., Ögren, M., Sørensen, M.P.: Zeno effect and switching of solitons in nonlinear couplers. Opt. Lett. 36, 4566 (2011)

    Article  ADS  Google Scholar 

  4. Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear \(\mathcal {PT}\)-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)

    Article  ADS  Google Scholar 

  5. Sukhorukov, A.A., Xu, Z., Kivshar, Yu. S.: Nonlinear suppression of time reversals in \(\mathcal {PT}\)-symmetric optical couplers. Phys. Rev. A 82, 043818 (2010)

    Article  ADS  Google Scholar 

  6. Bludov, Y.V., Konotop, V.V., Malomed, B.A.: Stable dark solitons in \(\mathcal {PT}\)-symmetric dual-core waveguides. Phys. Rev. A 87, 013816 (2013)

    Article  ADS  Google Scholar 

  7. Bludov, Y.V., Driben, R., Konotop, V.V., Malomed, B.A.: Instabilities, solitons and rogue waves in coupled nonlinear waveguides. J. Opt. 15, 064010 (2013)

    Article  ADS  Google Scholar 

  8. Alexeeva, N.V., Barashenkov, I.V., Sukhorukov, A.A., Kivshar, Y.S.: Optical solitons in \(\mathcal {PT}\)-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012)

    Article  ADS  Google Scholar 

  9. Zezyulin, D.A., Konotop, V.V.: Stationary modes and integrals of motion in nonlinear lattices with a \(\mathcal {PT}\)-symmetric linear part. J. Phys. A 46, 415301 (2013)

    Article  MathSciNet  Google Scholar 

  10. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zhurn. Eksp. Teor. Fiz. 65, 505 (1973)

    ADS  Google Scholar 

  11. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrodinger Systems̈. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  12. Barashenkov, I.V., Jackson, G.S., Flach, S.: Blow-up regimes in the \(\mathcal {PT}\)-symmetric coupler and the actively coupled dimer. Phys. Rev. A 88, 053817 (2013)

    Article  ADS  Google Scholar 

  13. Pickton, J., Susanto, H.: On the integrability of \(\mathcal {PT}\)-symmetric dimers. Phys. Rev. A 88, 063840 (2013)

    Article  ADS  Google Scholar 

  14. Kevrekidis, P.G., Pelinovsky, D.E., Tyugin, D.Y.: Nonlinear dynamics in PT-symmetric lattices. J. Phys. A 46, 365201 (2013)

    Article  MathSciNet  Google Scholar 

  15. Pelinovsky, D.E., Zezyulin, D.A., Konotop, V.V.: Nonlinear modes in a generalized \(\mathcal {PT}\)-symmetric discrete nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 47, 085204 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  16. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, LLC (2009)

  17. Dias, J.-P., Figueira, M., Konotop, V.V., Zezyulin, D.A.: Supercritical blowup in coupled parity-time-symmetric nonlinear Schrödinger equations. Stud. Appl. Math. 133, 422 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jüngel, A., Weishäupl, R.-M.: Blow-up in two-component nonlinear Schrödinger systems with an external driven field. Math. Models Methods Appl. Sci. 23, 1699 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567 (1983)

    Article  MATH  ADS  Google Scholar 

  20. Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

Download references


The authors thank Vadim Vekslerchik for helpful discussion at an earlier stage of the project. The work of D.P. is supported by the Ministry of Education and Science of Russian Federation (the base part of the state task No. 2014/133). DAZ and VVK acknowledge support of FCT (Portugal) under the grants PEst-OE/FIS/UI0618/2014 and PTDC/FIS-OPT/1918/2012.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vladimir V. Konotop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelinovsky, D.E., Zezyulin, D.A. & Konotop, V.V. Global Existence of Solutions to Coupled \(\mathcal {PT}\)-Symmetric Nonlinear Schrödinger Equations. Int J Theor Phys 54, 3920–3931 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: