Abstract
Hofstadter showed that the energy levels of electrons on a lattice plotted as a function of magnetic field form an beautiful structure now referred to as “Hofstadter’s butterfly”. We study a non-Hermitian continuation of Hofstadter’s model; as the non-Hermiticity parameter g increases past a sequence of critical values the eigenvalues successively go complex in a sequence of “double-pitchfork bifurcations” wherein pairs of real eigenvalues degenerate and then become complex conjugate pairs. The associated wavefunctions undergo a spontaneous symmetry breaking transition that we elucidate. Beyond the transition a plot of the real parts of the eigenvalues against magnetic field resembles the Hofstadter butterfly; a plot of the imaginary parts plotted against magnetic fields forms an intricate structure that we call the Hofstadter cocoon. The symmetries of the cocoon are described. Hatano and Nelson have studied a non-Hermitian continuation of the Anderson model of localization that has close parallels to the model studied here. The relationship of our work to that of Hatano and Nelson and to PT transitions studied in PT quantum mechanics is discussed.
This is a preview of subscription content, access via your institution.




References
Hofstader, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B14, 2239 (1976)
Kuhl, U., Stöckmann, H.J.: Microwave realization of the Hofstadter butterfly. Phys. Rev. Lett. 80, 3232 (1998)
Dean, C.R., et al.: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598 (2013)
Ponomarenko, L.A., et al.: Cloning of Dirac fermions in graphene superlattices. Nature 497, 595 (2013)
Hunt, B., et al.: Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427 (2013)
Yuce, C.: PT Symmetric Aubre-Andre Model. http://arxiv.org/pdf/1402.2749v1
Dyson, F.J.: General theory of spin-wave interactions. Phys. Rev. 102, 1217 (1956)
Hatano, N., Nelson, D.R.: Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996)
Hatano, N., Nelson, D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B56, 8651 (1997)
Hatano, N., Nelson, D.R.: Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B58, 8384 (1998)
Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)
Bender, C.M., Boettcher, S.: Real spectra in non-Hemitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)
Guo, A., et al.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)
Ruter, C.E., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 1515 (2010)
Yoshioka, D., Halperin, B.I., Lee, P.A.: Ground state of two-dimensional electrons in strong magnetic fields and 1/3 quantized hall effect. Phys. Rev. Lett. 50, 1219 (1983)
Haldane, F.D.M., Rezayi, E.H.: Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B31, 2529 (1985)
Wannier, G.H.: A result not dependent on rationality for Bloch electrons in a magnetic field. Phys. Status Solidi B88, 757 (1978)
MacDonald, A.H.: Landau-level subband structure of electrons on a square lattice. Phys. Rev. B28, 6713 (1983)
DiVincenzo, D.P., Steinhardt, P.J. (eds.).: Quasicrystals: The State of the Art, vol. 16. World Scientific, Singapore (1999)
McKane, A.J., Stone, M.: Localization as an alternative to Goldstone’s theorem. Ann. Phys. 131, 36 (1981)
Thouless, D.J., Kohomoto, M., Nightingale, M.P., den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jones-Smith, K., Wallace, C. Hofstadter’s Cocoon. Int J Theor Phys 54, 219–226 (2015). https://doi.org/10.1007/s10773-014-2216-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10773-014-2216-4
Keywords
- PT quantum mechanics
- Hofstadter butterfly
- Harper’s Equation