Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 1, pp 219–226 | Cite as

Hofstadter’s Cocoon

  • Katherine Jones-SmithEmail author
  • Connor Wallace
Article
  • 146 Downloads

Abstract

Hofstadter showed that the energy levels of electrons on a lattice plotted as a function of magnetic field form an beautiful structure now referred to as “Hofstadter’s butterfly”. We study a non-Hermitian continuation of Hofstadter’s model; as the non-Hermiticity parameter g increases past a sequence of critical values the eigenvalues successively go complex in a sequence of “double-pitchfork bifurcations” wherein pairs of real eigenvalues degenerate and then become complex conjugate pairs. The associated wavefunctions undergo a spontaneous symmetry breaking transition that we elucidate. Beyond the transition a plot of the real parts of the eigenvalues against magnetic field resembles the Hofstadter butterfly; a plot of the imaginary parts plotted against magnetic fields forms an intricate structure that we call the Hofstadter cocoon. The symmetries of the cocoon are described. Hatano and Nelson have studied a non-Hermitian continuation of the Anderson model of localization that has close parallels to the model studied here. The relationship of our work to that of Hatano and Nelson and to PT transitions studied in PT quantum mechanics is discussed.

Keywords

PT quantum mechanics Hofstadter butterfly Harper’s Equation 

References

  1. 1.
    Hofstader, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B14, 2239 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Kuhl, U., Stöckmann, H.J.: Microwave realization of the Hofstadter butterfly. Phys. Rev. Lett. 80, 3232 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Dean, C.R., et al.: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Ponomarenko, L.A., et al.: Cloning of Dirac fermions in graphene superlattices. Nature 497, 595 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Hunt, B., et al.: Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Yuce, C.: PT Symmetric Aubre-Andre Model. http://arxiv.org/pdf/1402.2749v1
  7. 7.
    Dyson, F.J.: General theory of spin-wave interactions. Phys. Rev. 102, 1217 (1956)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hatano, N., Nelson, D.R.: Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Hatano, N., Nelson, D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B56, 8651 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Hatano, N., Nelson, D.R.: Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B58, 8384 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  12. 12.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hemitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Guo, A., et al.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Ruter, C.E., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 1515 (2010)CrossRefGoogle Scholar
  16. 16.
    Yoshioka, D., Halperin, B.I., Lee, P.A.: Ground state of two-dimensional electrons in strong magnetic fields and 1/3 quantized hall effect. Phys. Rev. Lett. 50, 1219 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    Haldane, F.D.M., Rezayi, E.H.: Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B31, 2529 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    Wannier, G.H.: A result not dependent on rationality for Bloch electrons in a magnetic field. Phys. Status Solidi B88, 757 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    MacDonald, A.H.: Landau-level subband structure of electrons on a square lattice. Phys. Rev. B28, 6713 (1983)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    DiVincenzo, D.P., Steinhardt, P.J. (eds.).: Quasicrystals: The State of the Art, vol. 16. World Scientific, Singapore (1999)Google Scholar
  21. 21.
    McKane, A.J., Stone, M.: Localization as an alternative to Goldstone’s theorem. Ann. Phys. 131, 36 (1981)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Thouless, D.J., Kohomoto, M., Nightingale, M.P., den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics, Astronomy DepartmentOberlin CollegeOberlinUSA
  2. 2.Reed CollegePortlandUSA

Personalised recommendations