Skip to main content

Sedeonic Equations of Massive Fields

Abstract

Prior work on space-time sedeon algebra models relativistic quantum mechanical equation of motion with corresponding field equations, mediated by massive or massless spin-1 or spin-1/2 particles. In the massless spin-1 case, such exchange particles mediate fields in analogy to Maxwell’s equations in Lorentz gauge. This paper demonstrates fundamental aspects of massive field’s theory, such as gauge invariance, charge conservation, Poynting’s theorem, potential of a stationary scalar point source, plane wave solution, and interaction between point sources. We briefly discuss some aspects of sedeonic algebra and their potential physical applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ulrych, S.: The Poincare mass operator in terms of a hyperbolic algebra. Phys. Lett. B 612(1-2), 89 (2005)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Cafaro, C., Ali, S.A.: The spacetime algebra approach to massive classical electrodynamics with magnetic monopoles. AACA 17, 23 (2006)

    Article  MathSciNet  Google Scholar 

  3. 3.

    Candemir, N., Tanisli, M., Ozdas, K., Demir, S.: Hyperbolic octonionic Proca-Maxwell equations. Z. Naturforsch. A 63a, 15–18 (2008)

    Google Scholar 

  4. 4.

    Ulrych, S.: Considerations on the hyperbolic complex Klein-Gordon equation. J. Math. Phys. 51(6), 063510 (2010)

    ADS  Article  MathSciNet  Google Scholar 

  5. 5.

    Demir, S., Tanisli, M.: A compact biquaternionic formulation of massive field equations in gravi-electromagnetism. Eur. Phys. J. - Plus 126, 115 (2011)

    Article  Google Scholar 

  6. 6.

    Penney, R.: Octonions and Dirac equation. Am. J. Phys. 36, 871 (1968)

    ADS  Article  Google Scholar 

  7. 7.

    Davies, A.J.: Quaternionic Dirac equation. Phys. Rev. D 41(8), 2628 (1990)

    ADS  Article  MathSciNet  Google Scholar 

  8. 8.

    De Leo, S., Rotelli, P.: Quaternion scalar field. Phys. Rev. D 45(2), 575 (1992)

    ADS  Article  MathSciNet  Google Scholar 

  9. 9.

    De Leo, S., Abdel-Khalek, K.: Octonionic Dirac equation. Prog. Theor. Phys. 96, 833 (1996)

    ADS  Article  Google Scholar 

  10. 10.

    Mironov, V.L., Mironov, S.V.: Octonic first-order equations of relativistic quantum mechanics. Int. J. Mod. Phys. A 24(22), 4157 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Joyce, W.P.: Dirac theory in spacetime algebra: I. The generalized bivector Dirac equation. J. Phys. A Math. Gen. 34, 1991 (2001)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis. Appl. Math. Comput. 115, 77–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Demir, S., Tanisli, M.: Sedenionic formulation for generalized fields of dyons. Int. J. Theor. Phys. 51(4), 1239–1253 (2012)

    Article  MATH  Google Scholar 

  14. 14.

    Mironov, V.L., Mironov, S.V.: Reformulation of relativistic quantum mechanics equations with non-commutative sedeons. Appl. Math. 4(10C), 53–60 (2013)

    Article  MathSciNet  Google Scholar 

  15. 15.

    Mironov, V.L., Mironov, S.V.: Reformulation of relativistic quantum mechanics and field theory equations with space-time sedenions, e-print ViXra (2014). http://vixra.org/abs/1402.0157

  16. 16.

    Jackson, J.D., Okun, L.B.: Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663 (2001)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Mironov, V.L., Mironov, S.V.: Octonic representation of electromagnetic field equations. J. Math. Phys. 50, 012901 (2009)

    ADS  Article  MathSciNet  Google Scholar 

  18. 18.

    Mironov, V.L., Mironov, S.V., Korolev, S.A.: Sedeonic theory of massless fields. e-print arXiv:1206.5969 (2012)

  19. 19.

    Yukawa, H.: On the interaction of elementary particles I, In: Proceedings of the Physico-Mathematical Society of Japan, 17, 48 (1935)

  20. 20.

    Macfarlane, A.: Hyperbolic quaternions, Proc. R. Soc. Edinburgh, 1899-1900 session, pp. 169-181

  21. 21.

    Mironov, V.L., Mironov, S.V.: Octonic second-order equations of relativistic quantum mechanics. J. Math. Phys. 50, (2009)

  22. 22.

    Mironov, V.L., Mironov, S.V.: Sedeonic generalization of relativistic quantum mechanics. Int. J. Mod. Phys. A 24(32), 6237 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to G.V. Mironova for help and moral support. We would like to sincerely thank the referee for detailed analysis of our article and very valuable comments and discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor L. Mironov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mironov, S.V., Mironov, V.L. Sedeonic Equations of Massive Fields. Int J Theor Phys 54, 153–168 (2015). https://doi.org/10.1007/s10773-014-2211-9

Download citation

Keywords

  • Clifford algebra
  • Space-time sedeons
  • Massive fields