Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sedeonic Equations of Massive Fields

  • 167 Accesses

  • 11 Citations

Abstract

Prior work on space-time sedeon algebra models relativistic quantum mechanical equation of motion with corresponding field equations, mediated by massive or massless spin-1 or spin-1/2 particles. In the massless spin-1 case, such exchange particles mediate fields in analogy to Maxwell’s equations in Lorentz gauge. This paper demonstrates fundamental aspects of massive field’s theory, such as gauge invariance, charge conservation, Poynting’s theorem, potential of a stationary scalar point source, plane wave solution, and interaction between point sources. We briefly discuss some aspects of sedeonic algebra and their potential physical applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ulrych, S.: The Poincare mass operator in terms of a hyperbolic algebra. Phys. Lett. B 612(1-2), 89 (2005)

  2. 2.

    Cafaro, C., Ali, S.A.: The spacetime algebra approach to massive classical electrodynamics with magnetic monopoles. AACA 17, 23 (2006)

  3. 3.

    Candemir, N., Tanisli, M., Ozdas, K., Demir, S.: Hyperbolic octonionic Proca-Maxwell equations. Z. Naturforsch. A 63a, 15–18 (2008)

  4. 4.

    Ulrych, S.: Considerations on the hyperbolic complex Klein-Gordon equation. J. Math. Phys. 51(6), 063510 (2010)

  5. 5.

    Demir, S., Tanisli, M.: A compact biquaternionic formulation of massive field equations in gravi-electromagnetism. Eur. Phys. J. - Plus 126, 115 (2011)

  6. 6.

    Penney, R.: Octonions and Dirac equation. Am. J. Phys. 36, 871 (1968)

  7. 7.

    Davies, A.J.: Quaternionic Dirac equation. Phys. Rev. D 41(8), 2628 (1990)

  8. 8.

    De Leo, S., Rotelli, P.: Quaternion scalar field. Phys. Rev. D 45(2), 575 (1992)

  9. 9.

    De Leo, S., Abdel-Khalek, K.: Octonionic Dirac equation. Prog. Theor. Phys. 96, 833 (1996)

  10. 10.

    Mironov, V.L., Mironov, S.V.: Octonic first-order equations of relativistic quantum mechanics. Int. J. Mod. Phys. A 24(22), 4157 (2009)

  11. 11.

    Joyce, W.P.: Dirac theory in spacetime algebra: I. The generalized bivector Dirac equation. J. Phys. A Math. Gen. 34, 1991 (2001)

  12. 12.

    Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis. Appl. Math. Comput. 115, 77–88 (2000)

  13. 13.

    Demir, S., Tanisli, M.: Sedenionic formulation for generalized fields of dyons. Int. J. Theor. Phys. 51(4), 1239–1253 (2012)

  14. 14.

    Mironov, V.L., Mironov, S.V.: Reformulation of relativistic quantum mechanics equations with non-commutative sedeons. Appl. Math. 4(10C), 53–60 (2013)

  15. 15.

    Mironov, V.L., Mironov, S.V.: Reformulation of relativistic quantum mechanics and field theory equations with space-time sedenions, e-print ViXra (2014). http://vixra.org/abs/1402.0157

  16. 16.

    Jackson, J.D., Okun, L.B.: Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663 (2001)

  17. 17.

    Mironov, V.L., Mironov, S.V.: Octonic representation of electromagnetic field equations. J. Math. Phys. 50, 012901 (2009)

  18. 18.

    Mironov, V.L., Mironov, S.V., Korolev, S.A.: Sedeonic theory of massless fields. e-print arXiv:1206.5969 (2012)

  19. 19.

    Yukawa, H.: On the interaction of elementary particles I, In: Proceedings of the Physico-Mathematical Society of Japan, 17, 48 (1935)

  20. 20.

    Macfarlane, A.: Hyperbolic quaternions, Proc. R. Soc. Edinburgh, 1899-1900 session, pp. 169-181

  21. 21.

    Mironov, V.L., Mironov, S.V.: Octonic second-order equations of relativistic quantum mechanics. J. Math. Phys. 50, (2009)

  22. 22.

    Mironov, V.L., Mironov, S.V.: Sedeonic generalization of relativistic quantum mechanics. Int. J. Mod. Phys. A 24(32), 6237 (2009)

Download references

Acknowledgements

The authors are very thankful to G.V. Mironova for help and moral support. We would like to sincerely thank the referee for detailed analysis of our article and very valuable comments and discussion.

Author information

Correspondence to Victor L. Mironov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mironov, S.V., Mironov, V.L. Sedeonic Equations of Massive Fields. Int J Theor Phys 54, 153–168 (2015). https://doi.org/10.1007/s10773-014-2211-9

Download citation

Keywords

  • Clifford algebra
  • Space-time sedeons
  • Massive fields