Skip to main content
Log in

Remote Preparation of Quantum Entangled State in a Non-Markovian Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a practical and general scheme of remote state preparation in the presence of the classical non-Markovian noises, where one of the quantum channels becomes a mixed state. The noises can be modelled as the so-called Ornstein-Uhlenbeck processes. This remote state preparation scheme is more practical than the pure state case in quantum information processing. The fidelity of the remote state preparation is (1 + e −4f(t))/2 and the success probability is 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Xia, Y., Song, J., Song, H.S.: Remote preparation of the d-level N-particle GHZ state [J]. J. Mod. Opt 55, 1723 (2008)

    Article  MATH  Google Scholar 

  3. Liu, J.M., Wang, Y.Z.: Remote preparation of a two-particle entangled state [J]. Phys. Lett. A 316, 159 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Xue, Z.Y., Yang, M., Yi, Y.M., Cao, Z.L.: Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity. Opt. Commun. 258, 315 (2006)

    Article  ADS  Google Scholar 

  5. Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71, 044302 (2005)

    Article  ADS  Google Scholar 

  6. Bouwmeester, D., Pan, J.W., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  10. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Universtiy Press (2000)

  13. Deutsch, D., Josza, R.: Proc. R. Soc. London A 553, 439 (1992)

    Google Scholar 

  14. Shor, P.W.: SIAM J. Comp. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J.M., Wang, Y.Z.: Phys. Lett. A 316, 159 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Yu, Y.F., Feng, J., Zhan, M.S.: Phys. Lett. A 310, 329 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Sen(De), A., Sen, U., Brukner, C., Buzek, V., Zkowski, M.: Entanglement swapping of noisy states: a kind of superadditivity in nonclassicality. Phys. Rev. A 72, 042310 (2005)

    Article  ADS  Google Scholar 

  18. Wodkiewicz, K., Eberly, J.H.: Markovian and non-Markovian behavior in 2-level atom fluorescence. Ann. Phys. 101, 574–593 (1976)

    Article  ADS  Google Scholar 

  19. Wodkiewicz, K.: Non-Markovian resonance fluorescence. Phys. Lett. A 73, 94–96 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  20. Wodkiewicz, K.: Functional representation of a non- Markovian probability-distribution in statistical mechanics. Phys. Lett. A 84, 56–58 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wodkiewicz, K.: Langevin-equations with colored noise in quantum optics. Acta Phys. Pol. A 63, 191–200 (1983)

    Google Scholar 

  22. Eberly, J.H., Wodkiewicz, K., Shore, B.W.: Noise in strong laser-atom interactions-phase telegraph noise. Phys. Rev. A 30, 2381–2389 (1984)

    Article  ADS  Google Scholar 

  23. Wodkiewicz, K., Shore, B.W., Eberly, J.H.: Noise in strong laser-atom interactions-frequency fluctuations and nonexponential correlations. Phys. Rev. A 30, 2390–2398 (1984)

    Article  ADS  Google Scholar 

  24. Wodkiewicz, K., Shore, B.W., Eberly, J.H.: Pre-Gaussian noise in strong laser atom interactions. J. Opt. Soc. Am. B 1, 398–405 (1984)

    Article  ADS  Google Scholar 

  25. Wodkiewicz, K., Eberly, J.H., Shore, B.W.: Phase and frequency jump theory of laser band shape. J. Opt. Soc. Am. 1, 506–506 (1984)

    Article  ADS  Google Scholar 

  26. Wodkiewicz, K., Eberly, J.H.: Shot noise and general jump-processes in strong laser-atom interactions. Phys. Rev. A 31, 2314–2317 (1985)

    Article  ADS  Google Scholar 

  27. Wodkiewicz, K.: Spontaneous and induced emission of soft bosons-Exact non-Markovian solution-Comment. Phys. Rev. Lett. 63, 2693–2693 (1989)

    Article  ADS  Google Scholar 

  28. Kus, M., Wajnryb, E., Wodkiewicz, K.: Mean 1st passage time in the presence of colored noise-a randomtelegraph-signal approach. Phys. Rev. A 43, 4167–4174 (1991)

    Article  ADS  Google Scholar 

  29. Kus, M., Wodkiewicz, K.: Mean 1st-passage time in the presence of telegraph noise and the Ornstein-Uhlenbeck process. Phys. Rev. E 47, 4055–4063 (1993)

    Article  ADS  Google Scholar 

  30. Yu, T., Eberly, J.H.: Quantum. Inf. Comput 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  32. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under Grant Nos:11005029, 61370090 and 61073048, the Key Project of Chinese Ministry of Education under Grant No.211080, the Talent Project of the Anhui Province for Outstanding Youth under Grand: 2013SQRL064ZD,the Key Program of the Education Department of Anhui Province under Grant No.KJ2011A243 and No.KJ2012A206, project supported by Chizhou University under Grant No. 2013ZR013,Scientific Research Starting Foundation of Chizhou University (Grant No. 2011RC032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Fang, SD., Dong, P. et al. Remote Preparation of Quantum Entangled State in a Non-Markovian Environment. Int J Theor Phys 53, 4098–4106 (2014). https://doi.org/10.1007/s10773-014-2161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2161-2

Keywords

Navigation