El Naschie, M.S., Helal, M.A., Marek-Crnjac, L., et al.: Transfinite corrections as a Hardy type quantum entanglement. Fract. Spacet. Noncommut. Geom. 2, 499–102 (2012)
Google Scholar
El Naschie, M.S., Marek-Crnjac, L., He, J.H., Helal, M.A.: Computing the missing dark energy of a clopen universe which is its own multiverse in addition to being both flat and curved. Fract. Spacet. Noncommut. Geom. 3, 3–10 (2013)
Google Scholar
El Naschie, M.S., Olsen, S., He, J.H.: Dark energy of the quantum Hawking-Hartle wave of the cosmos from the holographic boundary and Lie symmetry groups – Exact computation and physical interpretation. Fract. Spacet. Noncommut. Geom. 3, 11–20 (2013)
Google Scholar
El Naschie, M.S.: A unified Newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light. Int. J. Mod. Nonl. Theory Applicat. 2, 43–54 (2013)
Article
Google Scholar
El Naschie, M.S.: The quantum gravity Immirzi parameter-A general physical and topological interpretation. Gravit. & Cosmol 19, 151–155 (2013)
MathSciNet
ADS
Article
Google Scholar
Marek-Crnjac, L., El Naschie, M.S., He, J.H.: Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. Int. J. Mod. Nonlinear Theory Appl. 2, 78–88 (2013)
Article
Google Scholar
El Naschie, M.S., Olsen, S., He, J.H.: A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory Dark energy of the quantum Hawking-Hartle wave of the cosmos from the holographic boundary and Lie symmetry groups – Exact computation and physical interpretation. Fract. Spacetime Noncommut. Geom. Quant. High Energ. Phys. 3, 11–20 (2013)
Google Scholar
El Naschie, M.S., Marek-Crnjac, L., He, Ji-Huan, Helal, Mohamed Atef: Computing the missing dark energy of a clopen universe which is its own multiverse in addition to being both flat and curved. Fract. Spacetime Noncommut. Geom. Quant. High Energ. Phys. 3, 3–10 (2013)
Google Scholar
Finkelstein, D.R.: Relativity Quantum: A Synthesis of the Ideas of Einstein and Heisenberg. Springer-Verlag (1996)
Finkelstein, D.: Quantum Sets and Clifford Algebras. Int. J. Theor. Phys. 21, 489–503 (1982)
MathSciNet
MATH
Article
Google Scholar
El Naschie, M.S.: Nanotechnology for the developing world. Chaos Soliton. Fract. 30, 769–773 (2006)
ADS
Article
Google Scholar
El Naschie, M.S.: Chaos and fractals in nano and quantum technology. Chaos Soliton. Fract. 9, 1793–1802 (1998)
MATH
ADS
Article
Google Scholar
He, J.H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B 22(21), 3487–3578 (2008)
MATH
ADS
Article
Google Scholar
He, J.H.: The Smaller, the Better: From the Spider-Spinning to Bubble-Electrospinning. Acta Phys. Pol. A 121, 254–256 (2012)
Google Scholar
He, J.H., Liu, Y.: A hierarchy of motion in electrospinning process and E-infinity nanotechnology. J. Poly. Eng. 28, 101–114 (2008)
Google Scholar
El Naschie, M.S.: Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology). Chaos Soliton. Fract. 30, 579–605 (2006)
MathSciNet
ADS
Article
Google Scholar
El Naschie, M.S.: A review of E infinity theory and the mass spectrum of high energy particle physics. Chaos Soliton. Fract. 19, 209–236 (2004)
MATH
ADS
Article
Google Scholar
Haven, E.: It’s lemma with quantum calculus (q-calculus): some implications. Found. Phys. 41, 529–537 (2011)
MathSciNet
MATH
ADS
Article
Google Scholar
Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2002)
MATH
Book
Google Scholar
Ord, G.N.: Fractals and the quantum classical boundary. Chaos Solit. Fract. 10, 1281–1294 (1999)
MathSciNet
MATH
ADS
Article
Google Scholar
Ord, G.N.: Fractal space-time and the statistical mechanics of random walks. Chaos Solit. Fract. 7, 821–843 (1996)
MathSciNet
MATH
ADS
Article
Google Scholar
El Naschie, M.S.: Deriving the curvature of fractal-Cantorian spacetime from first principles. Chaos Soliton. Fract. 41, 2259–2261 (2009)
ADS
Article
Google Scholar
He, J.H.: Frontier of Modern Textile Engineering and Short Remarks on Some Topics in Physics. Int. J. Nonlin. Sci. 11, 555–563 (2010)
Google Scholar
He, J.H.: Hilbert cube model for fractal spacetime. Chaos Soliton. Fract. 42, 2754–2759 (2009)
ADS
Article
Google Scholar
El Naschie, M.S.: Quantum loops, wild topology and fat Cantor sets in transfinite high-energy physics, Chaos. Solitons Fractals 13, 1167–1174 (2002)
MathSciNet
MATH
ADS
Article
Google Scholar
El Naschie, M.S.: The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos Soliton. Fract. 18, 401–420 (2003)
MATH
ADS
Article
Google Scholar
El Naschie, M.S.: Kaluza-Klein unification - Some possible extensions. Chaos Soliton. Fract. 37, 16–22 (2008)
ADS
Article
Google Scholar
He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth. Appl. Mech. Eng. 167, 57–68 (1998)
MATH
ADS
Article
Google Scholar
Fan, J., He, J.H.: Fractal derivative model for air permeability in hierarchic porous media. Abstr. Appl. Anal., 354701 (2012)
Zhao, L., Wu, G.C., He, J.H.: Fractal Approach to Flow through Porous Material. Int. J. Nonlin. Sci. Num. 10, 897–901 (2009)
Article
Google Scholar
Fan, J., He, J. H.: Biomimic design of multi-scale fabric with efficient heat transfer property. Therm. Sci. 16, 1349–1352 (2012)
Article
Google Scholar
Fan, J., Shang, X.M.: Water permeation in the branching channel net of wool fiber. Heat Transf. Res. 44, 465–472 (2013)
Article
Google Scholar
Fan, J., Shang, X.M.: Fractal heat transfer in wool fiber hierarchy. Heat Transf. Res. 44, 399–407 (2013)
Article
Google Scholar
Chen, R.X., Liu, F. J., He, J.H., Fan, J.: Silk Cocoon: “Emperor’s new clothes” for pupa: fractal nano-hydrodynamical approach. J. Nano Res. 22, 65–70 (2013)
Article
Google Scholar
He, J.-H., Liu, F.J.: Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy. Nonlinear Sci. Lett. A 4, 15–20 (2013)
Google Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nat. 438, 44 (2005)
ADS
Article
Google Scholar
Hummer, G.: Water, proton, and ion transport: from nanotubes to proteins. Mol. Phys. 105, 201–207 (2007)
ADS
Article
Google Scholar
Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87–94 (2007)
ADS
Article
Google Scholar
He, J.H.: A new resistance formulation for carbon nanotubes. J. Nanomater. 2008, 954874 (2008)
Google Scholar
He, J.H.: Nanoscale flow: reliable, efficient, and promising. Therm. Sci. 16(5), vii–viii (2012)
Article
Google Scholar
He, J.H., Kong, H.Y., Yang, R.R., et al.: Review on fiber morphology obtained bu bubble electrospinning and blown bubble spinning. Therm. Sci. 16(5), 1263–1279 (2012)
Article
Google Scholar
Kong, H.Y., He, J.H.: The fractal harmonic law and its application to swimming suit. Therm. Sci. 16(5), 1467–1471 (2012)
Article
Google Scholar
Kong, H.Y., He, J.H.: A novel friction law. Therm. Sci. 16(5), 1529–1533 (2012)
Article
Google Scholar
Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variational iteration method. Therm. Sci. 17 (2013)
Yang, A.M., Zhang, Y.Z., Yue, Y.Z.: The Yang-Fourier transforms to heat conduction in a semi-infinite fractal bar. Therm. Sci. 17, 707–713 (2013)
Article
Google Scholar
Liu, C.F., Kong, S.S., Yuan, S.J.: Reconstructive schems for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 17, 715–721 (2013)
Article
Google Scholar
He, J.H.: Variational iteration method - a kind of non-linear analytical technique: Some examples. Int. J. Non-L. Mech. 34, 699–708 (1999)
MATH
Article
Google Scholar
He, J.H.: Variational iteration method - Some recent results and new interpretations. J. Comput. Appl. Math. 207, 3–17 (2007)
MathSciNet
MATH
ADS
Article
Google Scholar
He, J.H., Wu, X.H.: Variational iteration method: New development and applications. Comput. Math. Applicat. 54, 881–894 (2007)
MathSciNet
MATH
Article
Google Scholar
He, J.H.: A short remark on fractional variational iteration method. Phys. Lett. A 375, 3362–3364 (2011)
MathSciNet
MATH
ADS
Article
Google Scholar
He, J.H., Wu, G.C., Austin, F.: The variational iteration method which should be followed. Nonlinear Science Letters A 1, 1–30 (2011)
MATH
Google Scholar
Wu, G.C.: New trends in the variational iteration method. Communications in Fractional Calculus 2, 59–75 (2011)
Google Scholar
Hosseini, S.M.M., Mohyud-Din, S.T., Ghaneai, H.: Variational iteration method for Hirota-Satsuma coupled KdV equation using auxiliary parameter. Int. J. Numer. Method. H. 22, 277–286 (2012)
MathSciNet
Article
Google Scholar
Wu, G.C.: Laplace transform overcoming principal drawbacks in application of the variational iteration method to fractional heat equations. Therm. Sci. 16, 1257–1261 (2012)
Article
Google Scholar
Ghaneai, H., Hosseini, M.M.: S.T. Mohyud-Din:Modified variational iteration method for solving a neutral functional-differential equation with proportional delays. Int. J. Numer. Method. H. 22, 1086–1095 (2012)
MathSciNet
Article
Google Scholar
Matinfar, M., Ghasemi, M.: Application of variational iteration method to nonlinear heat transfer equations using He’s polynomials. Int. J. Numer. Method. H. 23, 520–531 (2013)
MathSciNet
Article
Google Scholar
He, J.H.: Asymptotic methods for Solitary Solutions and Compactons. Abstract and Applied Analysis, 916793 (2012)
He, J.H.: Some Asymptotic Methods for Strongly Nonlinear Equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)
MATH
ADS
Article
Google Scholar
Jumarie, G.: Fractional partial differential equations and modified Riemann- Liouville derivative new methods for solution. Journal of Applied Mathematics and Computing 24, 31–48 (2007)
MathSciNet
MATH
Article
Google Scholar
Jumarie, G.: The Minkowski’s space–time is consistent with differential geometry of fractional order. Phy. Lett. A 363, 5–11 (2007)
MathSciNet
MATH
ADS
Article
Google Scholar
Jumarie, G.: Modified Riemann-Liouville Derivative and Fractional Taylor Series of Non-differentiable Functions Further Results. Comp. Math. Appl. 51, 1137–1376 (2006)
MathSciNet
Article
Google Scholar
Jumarie, G.: From Lagrangian mechanics fractal in space to space fractal Schrodinger’s equation via fractional Taylor’s series. Chaos Soliton. Fract. 41, 1590–1604 (2009)
MathSciNet
MATH
ADS
Article
Google Scholar
Chen, W., Zhang, X.D., Korošak, D.: Investigation on fractional relaxation-oscillation models. Int. J. Nonl. Sci. Num. 11, 3–9 (2010)
Google Scholar
Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 28, 923–929 (2006)
MATH
ADS
Article
Google Scholar
He, J.H.: A new fractal derivation. Therm. Sci. 15, S145-S147 (2011)
Google Scholar
Wu, G.C.: Variational Iteration Method for q-Difference Equations of Second Order. J. Appl. Math 2012, 102850 (2012)
Google Scholar
Wu, G.C.: Variational iteration method for q-diffusion equations on time scales, Heat Transfer Research Accepted. In press
Liu, H.K.: Application of the variational iteration method to strongly nonlinear q-difference equations. J. Appl. Math. 2010, 704138 (2010)
Google Scholar
Draganescu GE. Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. J. Math. Phys. 47, 082902 (2006)
MathSciNet
ADS
Article
Google Scholar
Odibat, Z.M., Momani, S.: Application of variational iteration method to Nonlinear differential equations of fractional order. Int. J. Nonlin. Sci. Num. 7, 27–34 (2006)
MathSciNet
Article
Google Scholar
Shawagfeh, N.T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 131, 517–529 (2002)
MathSciNet
MATH
Article
Google Scholar
Bildik, N., Konuralp, A.: The use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for solving different types of nonlinear partial differential equations. Int. J. Nonlinear Sci. Num. 7, 65–70 (2006)
MathSciNet
Google Scholar
He J.H.: A generalized poincare-invariant action with possible application in strings and E-infinity theory. 4 39, 1667–1670 (2009)
Google Scholar
Das, S.: Solution of Fractional Vibration Equation by the Variational Iteration Method and Modified Decomposition Method. Int. J. Nonlin. Sci. Num. 9(4), 361–366 (2008)
Article
Google Scholar
Odibat, Z., Momani, S.: Applications of the Variational Iteration and the Homotopy Perturbation Methods to Fractional Evolution Equations. Topol. Method. Nonl. An. 31, 227–234 (2008)
MathSciNet
MATH
Google Scholar
He, J.H.: Homotopy perturbation technique. Comput. Method. Appl. Mech. Eng. 178, 257–262 (1999)
MATH
ADS
Article
Google Scholar
He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Nonlinear Mech. 35, 37–43 (2000)
MATH
ADS
Article
Google Scholar
He, J.H.: Homotopy perturbation method with an auxiliary term. Abstr. Appl. Anal., 857612 (2012)
He, J.H.: A note on the homotopy perturbation method. Therm. Sci. 14, 565–568 (2010)
ADS
Google Scholar
Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)
MathSciNet
MATH
ADS
Article
Google Scholar
Gondal, M.A., Khan, M.: Homotopy Perturbation Method for Nonlinear Exponential Boundary Layer Equation using Laplace Transformation, He’s Polynomials and Pade Technology He’s Polynomials and Pade Technology. Int. J. Nonlin. Sci. Num. 11, 1145–1153 (2010)
Google Scholar
Yan, L.M.: Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations. Therm. Sci. 17, 1409–1414 (2013)
Article
Google Scholar
Liu, Y.: Approximate Solutions of Fractional Nonlinear Equations Using Homotopy Perturbation Transformation Method. Abstr. Appl. Anal., 752869 (2012)
Ganji, Z.Z., Ganji, D.D., Jafari, H., et al.: Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topol. Method. Nonl. An. 31, 341–348 (2008)
MathSciNet
MATH
Google Scholar
Odibat, Z., Momani, S.: Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36, 167–174 (2008)
MathSciNet
MATH
ADS
Article
Google Scholar
Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Applicat. 54, 910–919 (2007)
MathSciNet
MATH
Article
Google Scholar
Yildirim, A.: An Algorithm for Solving the Fractional Nonlinear Schrodinger Equation by Means of the Homotopy Perturbation Method. Int. J. Nonlin. Sci. Num. 10, 445–450 (2009)
Google Scholar
Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Soliton. Fract. 35, 843–850 (2008)
MATH
ADS
Article
Google Scholar
Jafari, H., Momani, S.: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 370, 388–396 (2007)
MathSciNet
MATH
ADS
Article
Google Scholar
Madani, M., Khan, Y., Mahmodi, Gh., et al.: Application of homotopy perturbation and numerical methods to the circular porous slider. Int. J. Numer. Method. H 22, 705–717 (2012)
Article
Google Scholar
Gupta, P.K., Yildirim, A., Rai, K.N.: Application of He’s homotopy perturbation method for multi-dimensional fractional Helmholtz equation. Int. J. Numer. Method. H 22, 424–435 (2012)
MathSciNet
Article
Google Scholar
Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burgers equations A comparison between generalized differential transformation technique and homotopy perturbation method. Int. J. Numer. Method. H 22, 175–193 (2012)
MathSciNet
Article
Google Scholar
He, J.H, Elagan, S.K.: Li ZB. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376, 257–259 (2012)
MathSciNet
MATH
ADS
Article
Google Scholar
Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15, 970–973 (2010)
MathSciNet
MATH
Google Scholar
Wang, Q.L., He, J.H., Li, Z.B.: Fractional model for heat conduction in polar bear hairs. Therm. Sci. 15, 1–5 (2011)
MATH
Article
Google Scholar
Li, Z.B., Zhu, W.H., He, J.H.: Exact solutions of time-fractional heat conduction equation by the fractional complex transform. Therm. Sci. 16, 335–338 (2012)
Article
Google Scholar
He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 30, 700–708 (2006)
MathSciNet
MATH
ADS
Article
Google Scholar
Wu, X.H.: J.H.He: Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Comput. Math. Applicat. 54, 966–986 (2007)
MATH
Article
Google Scholar
He, J.H.: Exp-function method for fractional differential equations. Int. J. Nonlin. Sci. Num.accepted
Zhang, S., Zhang, H.Q.: An Exp-function method for new N-soliton solutions with arbitrary functions of a (2 + 1)-dimensional vcBK system. Comput. Math. Applicat. 61, 1923–1930 (2011)
MATH
Article
Google Scholar
H.M.Fu, Z.D. Dai, Double Exp-function Method and Application. Int. J. Nonlinear Sci. Num. 10, 927–933 (2009)
Bekir, A.: Ahmet Boz, Exact Solutions for a Class of Nonlinear Partial Differential Equations using Exp-Function Method. Int. J. Nonlinear Sci. Num. 8, 505–512 (2007)
Google Scholar
Domairry, G., Davodi, A.G., Davodi, A.G.: Solutions for the double Sine-Gordon equation by Exp-function, Tanh, and extended Tanh methods. Numer. Meth. Part. D. E. 26, 384—398 (2010)
MathSciNet
Google Scholar
Zhang, S.: Exp-function Method: Solitary, Periodic and Rational Wave Solutions of Nonlinear Evolution Equations. Nonlinear Sci. Lett. A 1, 143–146 (2010)
Google Scholar
Misirli, E., Gurefe, Y.: The Exp-function Method to Solve the Generalized Burgers-Fisher Equation. Nonlinear Sci. Lett. A 1, 323–328 (2010)
Google Scholar
Zhang, S., Zong, Q.A., Liu, D., Gao, Q.: A Generalized Exp-Function Method for Fractional Riccati Differential Equations. Commun. Fractional Calc. 1, 48–51 (2010)
Google Scholar
Ghorbani, A.: Beyond Adomian polynomials: He polynomials. Chaos Soliton. Fract. 39, 1486–1492 (2009)
MathSciNet
MATH
ADS
Article
Google Scholar
A.Ghorbani, J.Saberi-Nadjafi: He’s Homotopy Perturbation Method for Calculating Adomian Polynomials. Int. J. Nonlinear Sci. Num. 8, 229–232 (2007)
Google Scholar
Ghorbani, A.: Beyond Adomian polynomials: He polynomials. Chaos Soliton. Fract. 39, 1486–1492 (2009)
MathSciNet
MATH
ADS
Article
Google Scholar
He, J.H.: Comment on “Variational Iteration Method for Fractional Calculus Using He’s Polynomials”. Abstr. Appl. Anal. 2012, 964974 (2012)
Google Scholar
Noor, M.A., Mohyud-Din, S.T.: Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials. Int. J. Nonlin. Sci. Num. 9, 141–156 (2008)
Google Scholar
Khan, Y., Mohyud-Din, S.D.: Coupling of He’s Polynomials and Laplace Transformation for MHD Viscous Flow over a Stretching Sheet. Int. J. Nonlin. Sci. Num. 11, 1103–1107 (2010)
Article
Google Scholar
Mohyud-Din, S.T., Noor, M.A., Noor, K.I., et al.: On the Coupling of He’s Polynomials and Laplace Transformation. Int. J. Nonlin. Sci. Num. 11, 93–96 (2010)
MathSciNet
Google Scholar
Madani, M., Fathizadeh, M., Khan, Y., et al.: On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model. 53, 1937–1945 (2011)
MathSciNet
MATH
Article
Google Scholar
Khan, Y., Wu, Q.: Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Applicat. 61, 1963–1967 (2011)
MathSciNet
MATH
Article
Google Scholar
Mishra, H.K., Nagar, A.K.: He-Laplace Method for Linear and Nonlinear Partial Differential Equations. J. Appl. Math. 2012, 180315 (2012)
MathSciNet
Google Scholar