Skip to main content
Log in

Quantum Splitting a Two-qubit State with a Genuinely Entangled Five-qubit State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new application of the genuinely entangled five-qubit state is investigated for quantum information splitting of a particular type of two-qubit state. In this scheme, a genuinely entangled five-qubit state is shared by Alice (a sender), Charlie (a controller) and Bob (a receiver), and Alice only needs to perform two Bell-state measurements and Charlie performs a single-qubit measurement, Bob can reconstruct the two-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both Alice and Charlie. This quantum information splitting scheme is deterministic, i.e. the probability of success is 100 %. The presented protocol is showed to be secure against certain eavesdropping attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y.H., Liu, J.C., Nie, Y.Y.: Int. J. Theor. Phys. 49, 2592 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hillery, M., Bužek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Karlsson, A., Koashi, M., Imoto, N.: Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  4. Zheng, S.B.: Phys. Rev. A 74, 054303 (2006)

    Google Scholar 

  5. Chen, X., Jiang, M., Chen, X.P., Li, H.: Quant. Inf. Process. (2013). doi:10.1007/s11128-013-0532-x

  6. Muralidharan, S., Jain, S., Panigrahi, P.K.: Opt. Commun. 284, 1082 (2011)

    Article  ADS  Google Scholar 

  7. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quant. Inf. Process. 10, 297 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Opt. Commun. 284, 1457 (2011)

    Article  ADS  Google Scholar 

  9. Li, Y.H., Liu, J.C., Nie, Y.Y.: Commun. Theor. Phys. 55, 421 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Phys.Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  11. Zhong, L.Y., Guo, Q., Cheng, L.Y., Su, S.L., Zhu, L., Wang, H.F., Zhang, S.: Opt. Commun. 285, 4616 (2012)

    Article  ADS  Google Scholar 

  12. Luo, M.X., Deng, Y.: Quant. Inf. Process. 12, 773 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: J. Phys. A: Math. Gen. 38, 1119 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Borras, A., Plastino, A.R., Batle, J., et al.: J. Phys. A: Math. Gen. 40, 13407 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Muralidharan, S., Panigrahi, P.K.: Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  16. Li, L., Qiu, D.: J. Phys. A: Math. Gen. 40, 10871 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Karlsson, A., Bourennane, M.: Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Agrawal, P., Pati, A.: Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61265001), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ13237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Huang Sang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, MH., Dai, HL. Quantum Splitting a Two-qubit State with a Genuinely Entangled Five-qubit State. Int J Theor Phys 53, 2708–2711 (2014). https://doi.org/10.1007/s10773-014-2066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2066-0

Keywords

Navigation