Skip to main content
Log in

Gravitational Collapse with Dark Energy and Dark Matter in Hořava-Lifshitz Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, the collapsing process of a spherically symmetric star, made of dust cloud, is studied in Hořava Lifshitz gravity in the background of Chaplygin gas dark energy. Two different classes of Chaplygin gas, namely, New variable modified Chaplygin gas and generalized cosmic Chaplygin gas are considered for the collapse study. Graphs are drawn to characterize the nature and to determine the possible outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different dark energy models. It is found that for open and closed universe, collapse proceeds with an increase in black hole mass, the only constraint being that, relatively smaller values of Λ has to be considered in comparison to λ. But in case of flat universe, possibility of the star undergoing a collapse in highly unlikely. Moreover it is seen that the most favourable environment for collapse is achieved when a combination of dark energy and dark matter is considered, both in the presence and absence of interaction. Finally, it is to be seen that, contrary to our expectations, the presence of dark energy does not really hinder the collapsing process in case of Hořava-Lifshitz gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Perlmutter, S. et al.: Measurements of omega and lambda from 42 high-redshift supernovae. ApJ 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  2. Spergel, D.N. et al.: First year Wilkinson microwave anisotropy probe (wmap) observations: Determination of cosmological parameters.. Astron. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209

    Article  ADS  Google Scholar 

  3. Setare, M.R., Jamil, M.: Holographic dark energy with varying gravitational constant in Horava-Lifshitz cosmology. JCAP 02, 010 (2010)

    Article  ADS  Google Scholar 

  4. Jamil, M., Saridakis, E.N., Setare, M.R.: The generalized second law of thermodynamics in Horava-Lifshitz cosmology. JCAP 1011, 032 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Jamil, M., Saridakis, E.N.: New agegraphic dark energy in Horava-Lifshitz cosmology. JCAP 1007, 028 (2010)

    Article  ADS  Google Scholar 

  6. Karami, K., Sheykhi, A., Jamil, M., Myrzakulov, R., Ghaffari, S., Abdolmaleki, A.: Power law entropy corrected new-agegraphic dark energy in Hořava-Lifshitz cosmology. Can. J. Phys. 90(5), 473 (2012)

    Article  ADS  Google Scholar 

  7. Karami, K., Jamil, M., Roos, M., Ghaffari, S., Abdolmaleki, A.: Entropy-corrected new agegraphic dark energy in Horava-Lifshitz cosmology. Astrophys. Space Sci. 340, 175 (2012)

    Article  ADS  MATH  Google Scholar 

  8. Riess, A.G. et al.: Type Ia supernova discoveries at z< 1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. ApJ 607, 665 (2004). arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  9. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: arXiv:gr-qc/0403062. (2004)

  11. Gorini, V., Kamenshchik, A., Moschella, U.: Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 67, 063509 (2003)

    Article  ADS  Google Scholar 

  12. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Exploring the expanding universe and dark energy using the Statefinder diagnostic. MNRAS 344, 1057 (2003)

    Article  ADS  Google Scholar 

  13. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  14. Barreiro, T., Sen, A.A.: Generalized Chaplygin gas in a modified gravity approach. Phys. Rev. D 70, 124013 (2004)

    Article  ADS  Google Scholar 

  15. Carturan, D., Finelli, F.: Cosmological effects of a class of fluid dark energy models. Phys. Rev. D 68, 103501 (2003)

    Article  ADS  Google Scholar 

  16. Benaoum, H.B.: arXiv:hep-th/0205140. (2002)

  17. Debnath, U., Banerjee, A., Chakraborty, S.: Role of modified Chaplygin gas in accelerated universe. Class. Quantum. Grav. 21, 5609 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Debnath, U.: Variable modified Chaplygin gas and accelerating universe. Astrophys. Space Sci. 312, 295299 (2007)

    Article  Google Scholar 

  19. Chakraborty, W., Debnath, U.: A new variable modified Chaplygin gas model interacting with scalar field. Gravitation Cosmol. 16, 223 (2010)

    Article  ADS  MATH  Google Scholar 

  20. González-Diaz, P.F.: You need not be afraid of phantom energy. Phys. Rev. D 68, 021303 (R) (2003)

    Article  ADS  Google Scholar 

  21. Chakraborty, W., Debnath, U., Chakraborty, S.: Generalized cosmic Chaplygin gas model with or without interaction. Gravitation Cosmol. 13, 293 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Aslam, A., Jamil, M., Momeni, D., Myrzakulov, R., Rashid, M.A., Raza, M.: Noether gauge symmetry approach in quintom cosmology. Astrophys. Space Sci. 348, 533 (2013)

    Article  ADS  Google Scholar 

  23. Pasqua, A., Jamil, M., Myrzakulov, R., Majeed, B.: Power-law entropy corrected ricci dark energy and dynamics of scalar fields. Phys. Scr. 86, 045004 (2012)

    Article  ADS  Google Scholar 

  24. Jamil, M., Momeni, D., Myrzakulov, R.: Attractor solutions in f(T) cosmology. Eur. Phys. J. C. 72, 1959 (2012)

    Article  ADS  Google Scholar 

  25. Jamil, M., Momeni, D., Rashid, M.A.: Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology. Eur. Phys. J. C. 71, 1711 (2011)

    Article  ADS  Google Scholar 

  26. Rudra, P., Debnath, U., Biswas, R.: Dynamics of modified Chaplygin gas in brane world scenario: Phase plane analysis. Astrophys. Space Sci. 339, 53 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Rudra, P.: Dynamics of interacting generalized cosmic Chaplygin gas in brane-world scenario. Astrophys. Space Sci. 342, 579 (2012)

    Article  ADS  MATH  Google Scholar 

  28. Chowdhury, R., Rudra, P.: Interacting generalised cosmic Chaplygin gas in loop quantum cosmology: A singularity free universe. Int. J. Theor. Phys. 52, 489 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rudra, P., Ranjit, C., Kundu, S.: How effective is new variable modified Chaplygin gas to play the role of dark energy: A dynamical system analysis in RS II brane model. Astrophys. Space Sci. 347, 433 (2013)

    Article  ADS  Google Scholar 

  30. Oppenhiemer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  31. Penrose, R.: Gravitational collapse: The role of general relativity. Riv. Nuovo. Cimento. 1, 252 (1969)

    Google Scholar 

  32. Joshi, P.S., Dadhich, N., Maartens, R.: Why do naked singularities form in gravitational collapse? Phys. Rev. D 65, 101501 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Banerjee, B., Debnath, U., Chakraborty, S.: Naked singularities in higher dimensional gravitational collapse. Int. J. Mod. Phys. D 12, 1255 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Debnath, U., Chakraborty, S.: Gravitational collapse in higher dimension. Gen. Rel. Grav. 36, 1243 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Dwivedi, I.H., Joshi, P.S.: Cosmic censorship violation in non-self-similar Tolman-Bondi models. Class. Quantum Grav. 9, L69 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Cai, R.-G., Wang, A.: Black hole formation from collapsing dust fluid in a background of dark energy. Phys. Rev. D 063005, 73 (2006)

    ADS  Google Scholar 

  37. Cai, R.-G., Wang, A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. J. Cosmol. Astropart. Phys. 0503, 002 (2005)

    Article  ADS  Google Scholar 

  38. Debnath, U., Chakraborty, S.: Role of modified Chaplygin gas as a dark energy model in collapsing spherically symmetric cloud. Int. J. Theor. Phys. 47, 2663 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nath, S., Chakraborty, S., Debnath, U.: Gravitational collapse due to dark matter and dark energy in the brane world scenario. Int. J. Mod. Phys. D 15, 1225 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Rudra, P., Biswas, R., Debnath, U.: Presence of dark energy and dark matter: Does cosmic acceleration signifies a weak gravitational collapse? Astrophys. Space Sci. 342, 557 (2012)

    Article  ADS  MATH  Google Scholar 

  41. Hořava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009)

    ADS  Google Scholar 

  42. Hořava, P.: Quantum gravity at a lifshitz point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hořava, P.: Spectral dimension of the universe in quantum gravity at a lifshitz point. Phys. Rev. Lett. 102, 161301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Hořava, P.: Quantum criticality and Yang-Mills gauge theory. Phys. Lett. B 694, 172 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  45. Hořava, P., Minic, D.: Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 85, 1610 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  46. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265, chapter 7. Wiley 1962 (2004)

  47. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  48. Hao, W.: Entropy-corrected holographic dark energy. Commun. Theor. Phys. 52, 743 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the facilities provided by the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India where a part of the work was carried out. Authors also thank the anonymous referee for his/her invaluable comments that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Rudra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudra, P., Debnath, U. Gravitational Collapse with Dark Energy and Dark Matter in Hořava-Lifshitz Gravity. Int J Theor Phys 53, 2668–2687 (2014). https://doi.org/10.1007/s10773-014-2063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2063-3

Keywords

Navigation