Skip to main content
Log in

The Cosmological Constant Constrained with Union2.1 Supernovae Type Ia Data

Derivation and Evaluation of Several FRW and Carmeli Models Presenting Underwhelming Support for the Standard Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We derive several, detailed relationships in terms of the Friedmann-Robertson-Walker (FRW) generalization which describe the Universe during both the radiation and matter dominated epochs. We explicitly provide for the influence of radiation, rather than burying this term within the matter term. Several models allow the cosmological constant (CC) to vary with universe expansion in differing manners. We evaluate these and other popular models including the ΛCDM(standard model), quintessence as presented by Vishwakarma, Equation of State (EoS) and the Carmeli model with data from the 580 Union2.1 supernovae type Ia collection, using several minimization routines and find models built about the CC, the ΛCDM models, fare no better than those without.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sumner, T.J.: Experimental searches for dark matter. Living Rev. Relativ. 5, 4 [Online Article]: cited [2014]. http://www.livingreviews.org/lrr-2002-4 (2002)

  2. Carroll, S.M.: The cosmological constant. Living Rev. Relativ., 3, 1 [Online Article]: cited [2014]. http://livingreviews.org/lrr-2001-1 (2001)

  3. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 [Online Article]: cited [2014]. http://www.livingreviews.org/lrr-2006-3 (2006)

  4. Shen, M.: Dark energy models in plane symmetric space-time with time varying Λ term. Int. J. Theor. Phys. 52, 178 (2013)

    Article  MATH  Google Scholar 

  5. Sola, J.: Cosmological constant and vacuum energy: old and new ideas. arXiv:1306.1527v3 (2013)

  6. Riess, A.G., Strolger, L.-G., Casertano, S., Ferguson, H.C., Mobasher, B., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  8. Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., et al.: The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  9. Astier, P.: The expansion of the universe observed with supernovae. Rep. Prog. Phys., 75, 116901 (2012)

    Google Scholar 

  10. Calder, A.D., Krueger, B.K., Jackson, A.P., Townsley, D.M.: The influence of chemical composition on models of type Ia supernovae. arXiv:1303.2207v1 (2013)

  11. Wang, X., Wang, L., Filippenko, A.V., Baron, E., Kromer, M.: Evidence for type Ia supernova diversity from ultraviolet observations with the hubble space telescope. Astrophys. J. 749, 126 (2012)

    Article  ADS  Google Scholar 

  12. Kirshner, R.P.: Foundations of supernovae cosmology. arXiv:0910.0257v1 (2009)

  13. Wang, S., Wang, Y.: Exploring the systematic uncertainties of type Ia supernovae as cosmological probes. arXiv:1306.6423v2 (2013)

  14. Chotard, N.N., Gangler, E., Aldering, G., Antilogus, P., Aragon, C., et al.: The reddening law of type Ia supernovae: separating intrinsic variability from dust using equivalent widths. Astron. Astrophys. 529, L4 (2011)

    Article  ADS  Google Scholar 

  15. Vishwakarma, R.G.: Consequences on variable Λ-models from distant type Ia supernovae and compact radio sources. Classical and Quantum Gravity 18, 1159 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Pavluchenko, S.A.: The generality of inflation in closed cosmological models with some quintessence potentials. arXiv:astro-ph0304354v1 (2003)

  18. Oztas, A.M., Smith, M.L.: A polytropic solution of the expanding universe - constraining relativistic and non-relativistic matter densities using astronomical results. In: Alfonso-Faus, A. (ed.) Aspects of Today’s Cosmology. Intechweb.org 51000 Rijeka, Croatia (2011)

  19. Smith, M.L., Oztas, A.M., Paul, J.: A model of light from ancient blue emissions. Int. J. Theor. Phys. 45, 937 (2006)

    Article  MATH  Google Scholar 

  20. Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743 (2010)

    Article  ADS  Google Scholar 

  21. Benitez-Herrera, S., Röpke, F., Hillebrandt, W., Mignone, C., Bartlemann, M.: Model-independent reconstruction of the expansion history of the universe from type Ia supernovae. Mon. Not. R. Astron. Soc. 419, 513 (2011)

    Article  ADS  Google Scholar 

  22. Hartnett, J.G.: Extending the redshift-distance relation in cosmological general relativity to higher redshifts. Found. Phys. 45, 201 (2008)

    Article  ADS  Google Scholar 

  23. Burles, S., Nollett, K.M., Turner, M.S.: Big bang nucleosynthesis predictions for precision cosmology. Astrophys. J. Lett. 552, L1–L5 (2001)

    Article  ADS  Google Scholar 

  24. Burles, S., Nollett, K.M., Turner, M.S.: What is the big-bang-nucleosynthesis prediction for the baryon density and how reliable is it? Phys. Rev. Part D Fields 63, 063512 (2001)

    Article  ADS  Google Scholar 

  25. Einstein, A.: The Principle of Relativity. Dover, New York, p. 11501 (1952)

  26. Carroll, S.M., Press, W.H., Turner, E.L.: The cosmological constant. Ann. Rev. Astron. Astrophys 30, 499 (1992)

    Article  ADS  Google Scholar 

  27. Galli, S., Bean, R., Melchiorri, A., Silk, J.: Delayed recombination and cosmic parameters. Phys. Rev. D 78, 063532 (2008)

    Article  ADS  Google Scholar 

  28. Suzuki, N., et al.: arXiv:1105.3470v1, http://supernova.lbl.gov/Union/figures/SCPUnion2.1 (2012)

  29. Oztas, A.M., Smith, M.L., Paul, J.: Spacetime curvature is important for cosmology constrained with supernova emissions. Int. J. Theor. Phys 47, 2464 (2008)

    Article  Google Scholar 

  30. Oztas, A.M., Smith, M.L., Paul, J.: A Model of light from ancient blue emissions. Int. J. Theor. Phys 45, 937 (2006)

    Article  Google Scholar 

  31. Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., et al.: The supernova legacy survey: Measurement of Ω m , ΩΛ and w from the first year data Set. Astron. Astrophys. 447, 31 (2006)

    Google Scholar 

  32. Behar, S., Carmeli, M.: Cosmological relativity: a new theory of cosmology. Int. J. Theor. Phys. 39, 1375 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hartnett, J.G.: A valid finite bounded expanding carmelian universe without dark matter. Int. J. Theor. Phys. 52, 4360 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Oliveira, F.J., Hartnett, J.G.: Carmeli’s cosmology fits data for an accelerating and decelerating universe without dark matter or dark energy. Found. Phys. Lett 19, 519 (2006)

    MATH  Google Scholar 

  35. Tonry, J.L., Schmidt, B.P., Barris, B., Candia, P., Challis, P., et al.: Cosmological results from high-Z supernovae. Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  36. Kroupa, P., Pawlowski, M., Milgrom, M.: The failures of the standard model of cosmology require a new paradigm. Int. J. Mod. Phys. D. 21, 1230003 (2013)

    Article  ADS  Google Scholar 

  37. Copi, C.J., Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis and the baryon density of the universe. Science. 267(5195), 192 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Smith.

Appendix: Tabulated Results

Appendix: Tabulated Results

Table 2 Results from least squares fits of eight models a using a robust minimization routine of luminosity distances (Mpc) vs. redshifts with χ 2/N-FP as the reduced χ 2 and ΔB I C as relative values
Table 3 Results from least squares fits of 8 common models a using a Gauss-Newton minimization routine of luminosity distances (Mpc) vs. the expansion factor, ν/ν 0 with χ 2/N-FP as the reduced χ 2 and ΔB I C as relative values
Table 4 Results from least squares fits of 9 models a using a Gauss-Newton minimization routine of luminosity distances (Mpc) vs. redshifts with χ 2/N-FP as the reduced χ 2 and ΔB I C as relative values
Table 5 Results from least squares fits of 7 models a using a robust minimization routine of luminosity distances (Mpc) vs. the expansion factor, ν/ν 0 and floating parameter, with χ 2/N-FP as the reduced χ 2 and ΔB I C as relative values
Table 6 Results from least squares fits of 7 common models a using a robust minimization routine of luminosity distances (Mpc) vs. redshifts with floating parameter; ordered as the reduced χ 2 and ΔB I C as relative values
Table 7 Results from least squares fits of 9 models a using a Gauss-Newton minimization routine of luminosity distances (Mpc) vs. redshifts with χ 2/N-FP and floating parameter, as the reduced χ 2 and ΔB I C as relative values
Table 8 Results from least squares fits of 8 models a using the Gauss-Newton minimization routine of luminosity distances (Mpc) vs. the expansion factor, ν/ν 0 and floating parameter; organized with χ 2/N-FP as the reduced χ 2 and ΔB I C as relative values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztas, A.M., Smith, M.L. The Cosmological Constant Constrained with Union2.1 Supernovae Type Ia Data. Int J Theor Phys 53, 2636–2661 (2014). https://doi.org/10.1007/s10773-014-2061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2061-5

Keywords

Navigation