Skip to main content
Log in

A Non-Entanglement Quantum Single Sign-On Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Single Sign-On (SSO) is an important cryptography mechanism in distributed systems. Quantum cryptography has gained great successes and makes great influence on traditional cryptography. In this paper, A SSO protocol under almost pure quantum cryptography without entanglement is designed. Through security analysis, we show that this protocol has good security properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossingIn: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179. IEEE, New York (1984)

    Google Scholar 

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  7. Wang, T.-Y., Wen, Q.-Y., Zhu, F.-C.: Multiparty controlled quantum secure direct communication with phase encryption. Int. J. Quantum Inf. 9(2), 801–807 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G Phys. Astron. 51(2), 176–183 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Cao, W.-F., Yang, Y.-G., Wen, Q.-Y.: Quantum secure direct communication with cluster states. Sci. China Ser. G Phys. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  10. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  14. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yang, Y.-G., Wang, Y., Chai, H.-P., Teng, Y.-W., Zhang, H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)

    Article  ADS  Google Scholar 

  17. Lin, S., Wen, Q.Y., Qin, S.J., et al.: Multiparty quantum secret sharing with collective eavesdroppingcheck. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  18. Yang, Y.-G., Wen, Q.-Y.: Comment on: “Efficient high-capacity quantum secret sharing with two-photon entanglement” [Phys. Lett. A 372, 1957 (2008)]. Phys. Lett. A 373(3), 396–398 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(56), 434–443 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Lin, S., Wen, Q.Y., Gao, F., Qin, S.J., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008)

    Article  ADS  Google Scholar 

  24. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)

    Article  ADS  Google Scholar 

  25. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 5472–5474 (2008)

    Article  ADS  Google Scholar 

  26. Wang, T.Y., Wen, Q.Y., Zhu, F.-C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Yang, Y.-G., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)

    Article  ADS  MATH  Google Scholar 

  28. Yang, Y.-G., Chai, H.-P., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. China Ser. G Phys. Astron. 54(9), 1619–1624 (2011)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  30. Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of the Hillery-Buz̆ek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  31. Dus̆ek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  32. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  33. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  34. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  35. Huang, P., Zhu, J., Lu, Y., Zeng, G.H.: Quantum identity authentication using Gaussian-modulated squeezed states. Int. J. Quantum Inf. 9(2), 701–721 (2011)

    Article  MATH  Google Scholar 

  36. Wang, J., Zhang, Q., Tang, C.J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23(9), 2360–2363 (2006)

    Article  ADS  Google Scholar 

  37. Yang, Y.-G., Wen, Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger-Horne-Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009)

    Article  ADS  Google Scholar 

  38. Yang, Y.-G., Wen, Q.-Y.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Ser. G Phys. Astron. 51(3), 321–327 (2008)

    Article  ADS  MATH  Google Scholar 

  39. Botzum, K.: Single Sign On C A Contrarian View. http://www.opengroup.org/security/topics.htm (2013)

  40. Pashalidis, A., Mitchell, C.: A Taxonomy of Single Sign-On Systems. http://www.isg.rhul.ac.uk (2013)

  41. Steiner, J., Neuman, C., Schiller, J.: Kerberos: An Authentication Service for Open Network Systems. http://www.cse.nd.edu/courses/cse598z/www/papers/kerberos.pdf (1988)

  42. Dai, G., Wang, Y.: Single sign-on under quantum cryptography. Int. J. Theor. Phys. 53, 188–193 (2014)

    Google Scholar 

Download references

Acknowledgements

This research was partly supported by Beijing Municipal Education Commission Projects grants JC007011201004, Beijing Municipal Education Colleges and Universities to Deepen Talents Scheme, and CSC Projects in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiping Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, G., Wang, Y. A Non-Entanglement Quantum Single Sign-On Protocol. Int J Theor Phys 53, 2587–2592 (2014). https://doi.org/10.1007/s10773-014-2057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2057-1

Keywords

Navigation