Optimal Entanglement Concentration of the Greenberger-Horne-Zeilinger States in Quantum-dot and Micro-cavity Coupled System

Abstract

The distillation of the triplet Greenberger-Horne-Zeilinger (GHZ) state is demonstrated by using the entanglement concentrating process for the partially electron-spin-entangled systems. We designate an entanglement concentration protocol (ECP) in the quantum-dot (QD) and micro-cavity coupled systems based on the post-selection, from which the partially entangled state can be concentrated with an aid of the ancillary QD and single photon. This protocol can be repeated several rounds to get an optimal success probability. With the current technology, the maximally entangled electron spins can be achieved in the GHZ states after performing some suitable unitary operation locally for the long-distance quantum communications. The advantage is that during the whole process only the single photon needs to pass through the micro-cavity which increases the total success probability even if the cavity is imperfect in implementations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. 2.

    Guo, Y., Lee, M.H., Zeng, G.: Quant. Infor. Proces. 12(4), 1659 (2013)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Pan, J.W., Simon, C., Zellinger, A.: Nature (London) 410, 1067 (2001)

    ADS  Article  Google Scholar 

  4. 4.

    Simon, C., Pan, J.W.: Phys. Rev. Lett. 89, 257901 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 042308 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Phys. Rev. Lett. 77, 2818 (1996)

    ADS  Article  Google Scholar 

  7. 7.

    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    ADS  Article  Google Scholar 

  8. 8.

    Shi, B.S., Jiang, Y.K., Guo, G.C.: Phys. Rev. A 62, 054301 (2000)

    ADS  Article  Google Scholar 

  9. 9.

    Paunković, N., Omar, Y., Bose, S., Vedral, V.: Phys. Rev. Lett. 88, 187903 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    Yamamoto, T., Koashi, M., Imoto, N.: Phys. Rev A 64, 012304 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Nature (London) 421, 343 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 062325 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    Deng, F.G.: Phys. Rev. A 85, 022311 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Zhang, L.H., Yang, M., Cao, Z.L.: Physica A 374, 611 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    Wang, C., Zhang, Y., Jin, G.S.: Phys. Rev. A 84, 032307 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    Wang, C.: Phys. Rev. A 86, 012323 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    Young, A.B., Oulton, R., Hu, C.Y., et al.: Phys. Rev. A 84, 011803(R) (2011)

    ADS  Article  Google Scholar 

  19. 19.

    Hu, C.Y., Rarity, J.G.: Phys. Rev. B 83, 115303 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    Dur, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)

    ADS  Article  MathSciNet  Google Scholar 

  21. 21.

    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    Wang, C., Zhang, Y., Jin, G.-S.: Phys. Rev. A 84, 032307 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dazu Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (61272495, 61379153), the New Century Excellent Talents in University, China (NCET-11-0510), and partly by Scientific Research Fund of Hunan Provincial Education Department (13A010) and the construct program of the key discipline in Hunan province.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Fu, J., Guo, Y. et al. Optimal Entanglement Concentration of the Greenberger-Horne-Zeilinger States in Quantum-dot and Micro-cavity Coupled System. Int J Theor Phys 53, 2538–2548 (2014). https://doi.org/10.1007/s10773-014-2051-7

Download citation

Keywords

  • Entanglement
  • Bell state
  • Greenberger-Horne-Zeilinger state
  • Entanglement distillation
  • Quantum communications
  • Quantum information