Skip to main content
Log in

Optimal Entanglement Concentration of the Greenberger-Horne-Zeilinger States in Quantum-dot and Micro-cavity Coupled System

International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The distillation of the triplet Greenberger-Horne-Zeilinger (GHZ) state is demonstrated by using the entanglement concentrating process for the partially electron-spin-entangled systems. We designate an entanglement concentration protocol (ECP) in the quantum-dot (QD) and micro-cavity coupled systems based on the post-selection, from which the partially entangled state can be concentrated with an aid of the ancillary QD and single photon. This protocol can be repeated several rounds to get an optimal success probability. With the current technology, the maximally entangled electron spins can be achieved in the GHZ states after performing some suitable unitary operation locally for the long-distance quantum communications. The advantage is that during the whole process only the single photon needs to pass through the micro-cavity which increases the total success probability even if the cavity is imperfect in implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Guo, Y., Lee, M.H., Zeng, G.: Quant. Infor. Proces. 12(4), 1659 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Pan, J.W., Simon, C., Zellinger, A.: Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  4. Simon, C., Pan, J.W.: Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  5. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  6. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  8. Shi, B.S., Jiang, Y.K., Guo, G.C.: Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  9. Paunković, N., Omar, Y., Bose, S., Vedral, V.: Phys. Rev. Lett. 88, 187903 (2002)

    Article  ADS  Google Scholar 

  10. Yamamoto, T., Koashi, M., Imoto, N.: Phys. Rev A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  11. Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Nature (London) 421, 343 (2003)

    Article  ADS  Google Scholar 

  12. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  13. Deng, F.G.: Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  14. Zhang, L.H., Yang, M., Cao, Z.L.: Physica A 374, 611 (2007)

    Article  ADS  Google Scholar 

  15. Wang, C., Zhang, Y., Jin, G.S.: Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  16. Wang, C.: Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  17. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  18. Young, A.B., Oulton, R., Hu, C.Y., et al.: Phys. Rev. A 84, 011803(R) (2011)

    Article  ADS  Google Scholar 

  19. Hu, C.Y., Rarity, J.G.: Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  20. Dur, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  22. Wang, C., Zhang, Y., Jin, G.-S.: Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazu Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (61272495, 61379153), the New Century Excellent Talents in University, China (NCET-11-0510), and partly by Scientific Research Fund of Hunan Provincial Education Department (13A010) and the construct program of the key discipline in Hunan province.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Fu, J., Guo, Y. et al. Optimal Entanglement Concentration of the Greenberger-Horne-Zeilinger States in Quantum-dot and Micro-cavity Coupled System. Int J Theor Phys 53, 2538–2548 (2014). https://doi.org/10.1007/s10773-014-2051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2051-7

Keywords

Navigation