Skip to main content
Log in

Investigation of Commuting Hamiltonian in Quantum Markov Network

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2014

Abstract

Graphical Models have various applications in science and engineering which include physics, bioinformatics, telecommunication and etc. Usage of graphical models needs complex computations in order to evaluation of marginal functions, so there are some powerful methods including mean field approximation, belief propagation algorithm and etc. Quantum graphical models have been recently developed in context of quantum information and computation, and quantum statistical physics, which is possible by generalization of classical probability theory to quantum theory. The main goal of this paper is preparing a primary generalization of Markov network, as a type of graphical models, to quantum case and applying in quantum statistical physics. We have investigated the Markov network and the role of commuting Hamiltonian terms in conditional independence with simple examples of quantum statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann Publishers, Inc., San Francisco (1988)

  2. Gallager, R.G.: Low-Density Parity, Check Codes. MIT Press, Cambridge (1963)

  3. McEliece, R., MacKay, D., Cheng, J.-F.: Turbo decoding as an instance of Pearl’s belief propagation” algorithm. IEEE J. Sel. Areas Commun. 16(2) (1998)

  4. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press (2003)

  5. Yedidia, J., Freeman, W., Weiss, Y.: Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms. Technical Report TR-2002-35, Mitsubishi Electric Research Laboratories (2002)

  6. Braunstein, A., Mezard, M., Zecchina, R.: Survey Propagation: An Algorithm for Satisfiability. http://fr.arxiv.org/abs/cs.CC/0212002 (2003)

  7. Kschischang, F., Frey, B., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2) (2001)

  8. Leifer, M.S., Poulin, D.: Quantum graphical models and belief propagation. Ann. Phys. 323(8), 1899–1946 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Poulin, D., Hastings, M.B.: Markov entropy decomposition: a variational dual for quantum belief propagation. Phys. Rev. Lett. 106, 080403 (2011)

    Article  ADS  Google Scholar 

  10. Hasting, M.: Quantum belief propagation. Phys. Rev. B 76(20), 2007 (1102)

    Google Scholar 

  11. Poulin, D., Bilgin, E.: Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs. Phys. Rev. A 77(05), 2318 (2008)

    Article  ADS  Google Scholar 

  12. Poulin, D., Wocjan, P.: Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett. 102, 130503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hovington, P., Drouin, D., Gauvin, R.: CASINO: A new monte carlo code in C language for electron beam interaction part I: description of the program. Scanning 19, 1–14 (1997)

    Article  Google Scholar 

  14. Pasztor, E.C., Carmichael, O.T., Freeman, W.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000)

    Article  MATH  Google Scholar 

  15. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 721–741 (1984)

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  17. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Exploring Artificial Intelligence in the New Millennium, pp. 239–269. Morgan Kaufmann Publishers Inc., San Francisco (2003)

  18. Lauritzen, S.: Lecture Notes. Fundamentals of Graphical Models. Oxford. http://www.stats.ox.ac.uk/steffen/stflour (2006)

  19. Poulin, D.: Joint work with: Matt Leifer and Ersen Bilgin. Quantum Graphical Models and Belief Propagation. Santa Fe (2008)

  20. Hammersley, J.: A Markov Fields on Finite Graphs. unpublished manuscript (1971)

  21. Poulin, D.: Belief Propagation in the Quantum World. Princeton (2011)

  22. Brown, W., Poulin, D.: Quantum Markov Networks and Commuting Hamiltonians. unpublished (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ghafari Jouneghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouneghani, F.G., Babazadeh, M., Bayramzadeh, R. et al. Investigation of Commuting Hamiltonian in Quantum Markov Network. Int J Theor Phys 53, 2521–2530 (2014). https://doi.org/10.1007/s10773-014-2042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2042-8

Keywords

Navigation