Deterministic Entanglement Purification of the Greenberger-Horne-Zeilinger States in Quantum-Dot and Micro-cavity Coupled System

Abstract

An improved purification of the triplet Greenberger-Horne-Zeilinger (GHZ) state is demonstrated for the electron-spin-entangled state in the quantum-dot (QD) and micro-cavity coupled systems. In order to distill the maximally entangled GHZ state efficiently, we designate a deterministic entanglement purification protocol (EPP) by using a pair of the triplet-electron-spin-entangled systems. It is based on the elegant parity-check operations performed in the cavity-spin-coupling system with the assistance of an ancillary single photon. With the current and feasible technology, the maximally entangled GHZ states can be achieved as much as flexible for the long-distance quantum communications since only single-photon detection and single-electron detection are required in practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. 2.

    Guo, Y., Lee, M.H., Zeng, G.: Quantum Inf. Process. 12(4), 1659 (2013)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Phys. Rev. Lett. 77, 2818 (1996)

    ADS  Article  Google Scholar 

  4. 4.

    Pan, J.W., Simon, C., Zellinger, A.: Nature (London) 410, 1067 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    Simon, C., Pan, J.W.: Phys. Rev. Lett. 89, 257901 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 042308 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    Li, X.H.: Phys. Rev. A 82, 044304 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    Deng, F.G.: Phys. Rev. A 83, 062316 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    Deng, F.G.: Phys. Rev. A 84, 052312 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    Feng, X.L., Kwek, L.C., Oh, C.H.: Phys. Rev. A 71, 064301 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    Beenakker, C.W.J., Divincenzo, D.P., Emary, C., Kindermann, M.: Phys. Rev. Lett. 93, 020501 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    Waks, E., Vuckovic, J.: Phys. Rev. Lett. 96, 153601 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Hu, C.Y., Rarity, J.G.: Phys. Rev. B 83, 115303 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    Wang, C., Zhang, Y., Jin, G.S.: Phys. Rev. A 84, 032307 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    Young, A.B., Oulton, R., Hu, C.Y., et al.: Phys. Rev. A 84, 011803(R) (2011)

    ADS  Article  Google Scholar 

  17. 17.

    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    Wang, C., Zhang, Y., Jin, G.-S.: Phys. Rev. A 84, 032307 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    Xu, X., Yao, W., Sun, B., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Nature (London) 459, 1105 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    Gallardo, E., Martinez, L.J., Nowak, A.K., Sarkar, D., Medlen, H.P., Calleja, J.M., Tejedor, C., Prieto, I., Granados, D., Taboada, A.G., Garcia, J.M., Postigo, P.A.: Phys. Rev. B 81, 193301 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    Reithmaier, J.P., Sek, G., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Nature (London) 432, 197 (2004)

    ADS  Article  Google Scholar 

  22. 22.

    Birkedal, D., Leosson, K., Hvam, J.M.: Phys. Rev. Lett. 87, 227401 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Science 320, 349 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    Faraon, A., Majumdar, A., Kim, H., Petroff, P., Vuckovic, J.: Phys. Rev. Lett. 104, 047402 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61272495, 61379153), the New Century Excellent Talents in University, China (NCET-11-0510), and partly by China Postdoctoral Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dazu Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y.J., Fu, J., Guo, Y. et al. Deterministic Entanglement Purification of the Greenberger-Horne-Zeilinger States in Quantum-Dot and Micro-cavity Coupled System. Int J Theor Phys 53, 2304–2311 (2014). https://doi.org/10.1007/s10773-014-2030-z

Download citation

Keywords

  • Entanglement
  • Quantum purification
  • Greenberger-Horne-Zeilinger state
  • Quantum information