Skip to main content
Log in

Truncated Coherent States and Photon-Addition

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A class of states of the electromagnetic field involving superpositions of all the excited states above a specified low energy eigenstate of the electromagnetic field is introduced. These states and the photon-added coherent states are shown to be the limiting cases of a generalized photon-added coherent state. This new class of states is nonclassical, non-Gaussian and has equal uncertainties in the field quadratures. For suitable choices of parameters, these uncertainties are very close to those of the coherent states. Nevertheless, these states exhibit sub-Poissonian photon number distribution, which is a nonclassical feature. Under suitable approximations, these states become the generalized Bernoulli states of the field. Nonclassicality of these states is quantified using their entanglement potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, New York (2005)

    Google Scholar 

  4. Yurke, B., Stoler, D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)

    Article  ADS  Google Scholar 

  5. Buzek, V., Vidiella-Barranco, A., Knight, P.L.: Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A 45, 6570–6585 (1992)

    Article  ADS  Google Scholar 

  6. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrodinger cats’ from photon number states. Nature 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  7. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  8. Lee, J., Kim, J., Nha, H.: Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes. J. Opt. Soc. Am. B 26, 1363–1369 (2009)

    Article  ADS  Google Scholar 

  9. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)

    Article  ADS  Google Scholar 

  10. Babichev, S.A., Ries, J., Lvovsky, A.I.: Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003)

    Article  ADS  Google Scholar 

  11. Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., Grangier, P.: Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010)

    Article  ADS  Google Scholar 

  12. Marek, P., Jeong, H., Kim, M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811 (2008)

    Article  ADS  Google Scholar 

  13. Kuang, L.M., Wang, F.B., Zhou, Y.G.: Coherent states of a harmonic oscillator in a finite-dimensional Hilbert space and their squeezing properties. J. Mod. Opt. 41, 1307–1318 (1994)

    Article  ADS  Google Scholar 

  14. Leonski, W., Kowalewska-Kudlaszyk, A.: Quantum scissors-finite dimensional states engineering. Prog. Opt. 56, 131–185 (2011)

    Article  Google Scholar 

  15. Miranowics, A., Piatek, K., Tanas, R.: Coherent states in a finite-dimensional Hilbert space. Phys. Rev. A 50, 3423–3426 (1994)

    Article  ADS  Google Scholar 

  16. Leonski, W.: Finite-dimensional coherent-state generation and quantum-optical oscillator models. Phys. Rev. A 55, 3874–3878 (1997)

    Article  ADS  Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integral, Series and Products. Academic Press, San Diego (2000)

    Google Scholar 

  18. Pegg, D.T., Philips, L.S., Barnett, S.M.: Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998)

    Article  ADS  Google Scholar 

  19. Kuang, L.M., Wang, F.B., Zhou, Y.G.: Dynamics of a harmonic oscillator in a finite-dimensional Hilbert space. Phys. Lett. A 183, 1–8 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Miranowicz, A., Leonski, W., Imoto, N.: Quantum-optical states in finite-dimensional Hilbert space. I. General formalism. Adv. Chem. Phys. 119, 155–194 (2001)

    Google Scholar 

  21. Leonski, W., Miranowicz, A.: Quantum-optical states in finite-dimensional Hilbert space. II. State generation. Adv. Chem. Phys. 119, 194–214 (2001)

    Google Scholar 

  22. Kim, M.S.: Recent developments in photon-level operations on travelling light fields. J. Phys. B, At. Mol. Opt. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  23. Shanta, P., Srinivasan, S.Chaturvedi.V., Agarwal, G.S., Mehta, C.L.: Unified approach to multiphoton coherent states. Phys. Rev. Lett. 72, 1447–1450 (1994)

    Article  ADS  Google Scholar 

  24. Roy, A.K., Mehta, C.L.: Boson inverse operators and associated coherent states. J. Opt. B, Quantum Semiclass. Opt. 7, 877–888 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  25. Safaeian, O., Tavassoly, M.K.: Deformed photon-added nonlinear coherent states and their non-classical properties. J. Phys. A, Math. Theor. 44, 225301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sixdeniers, J.-M., Penson, K.A.: On the completeness of photon-added coherent states. J. Phys. A, Math. Gen. 34, 2859–2866 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132–135 (1981)

    Article  ADS  Google Scholar 

  28. Vogel, W., Welsch, D.G., Wallentowitz, S.: Quantum Optics an Introduction. Wiley/VCH, Berlin (2001)

    MATH  Google Scholar 

  29. Stoler, D., Saleh, B.E.A., Teich, M.C.: Binomial states of the quantized radiation field. Opt. Acta 32, 345–355 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)

    Article  ADS  Google Scholar 

  31. Naderi, M.H.: The Jaynes-Cummings model beyond the rotating-wave approximation as an intensity-dependent model: quantum statistical and phase properties. J. Phys. A, Math. Theor. 44, 055304 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hayrynen, T., Oksanen, J., Tulkki, J.: Nonlinear laser cavities as nonclassical light sources. Europhys. Lett. 100, 54001 (2013)

    Article  ADS  Google Scholar 

  33. Pegg, D.T., Barnett, S.M.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665–1675 (1989)

    Article  ADS  Google Scholar 

  34. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979)

    Article  ADS  Google Scholar 

  35. Hillery, M.: Nonclassical distance in quantum optics. Phys. Rev. A 35, 725–732 (1987)

    Article  ADS  Google Scholar 

  36. Wunsche, A., Dodonov, V.V., Man’ko, O.V., Man’ko, V.I.: Nonclassicality of states in quantum optics. Fortschr. Phys. 49, 1117–1122 (2001)

    Article  Google Scholar 

  37. Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775–R2778 (1991)

    Article  ADS  Google Scholar 

  38. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt., B Quantum Semiclass. Opt. 6, 396–404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. Vogel, W., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989)

    Article  ADS  Google Scholar 

  40. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993)

    Article  ADS  Google Scholar 

  41. Leonhardt, U.: Measuring the Quantum State of Light. Oxford University Press, Oxford (1997)

    Google Scholar 

  42. Asboth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  43. Kim, M.S., Son, W., Buzek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  44. Wang, X.-B.: Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  45. DasGupta, A.: Disentanglement formulas: an alternative derivation and some applications to squeezed coherent states. Am. J. Phys. 64, 1422–1427 (1996)

    Article  ADS  Google Scholar 

  46. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  47. Usha Devi, A.R., Prabhu, R., Uma, M.S.: Non-classicality of photon added coherent and thermal radiations. Eur. Phys. J. D 40, 133–138 (2006)

    Article  ADS  Google Scholar 

  48. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Beam splitting and entanglement generation: excited coherent states. Quantum Inf. Process. 12, 69–82 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, S. Truncated Coherent States and Photon-Addition. Int J Theor Phys 53, 1697–1709 (2014). https://doi.org/10.1007/s10773-013-1967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1967-7

Keywords

Navigation