Skip to main content
Log in

Dissipative Dynamics of Quantum Discord of Two Strongly Driven Qubits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The exact dynamics of quantum discord (QD) of two strongly driven qubits, which are initially prepared in the X-type quantum states and inserted in two independent dissipative cavities or in a common dissipative cavity, are studied. The results indicate that both in the two cases, the evolution of QD is independent of the initial cavity state. For the two independent dissipative cavities, it is found that the phenomenon of sudden transition between classical and quantum decoherence exists and the transition time can be greatly delayed by suitably choosing the initial state parameter of the two qubits, the cavity mode-driving field detunning and the decay rate of the cavity. For the common dissipative cavity, it is shown that for some initial states of the two qubits, the QD can increase for a finite time at first, and then it decreases to a steady value, while for some other initial states, the QD can increase monotonously or with oscillation till a stable value is reached. Moreover, the creation of QD for the two qubits in a common cavity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  4. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  5. Luo, S.L., Sun, W.: Decomposition of bipartite states with applications to quantum no-broadcasting theorems. Phys. Rev. Lett. 82, 012338 (2010)

    ADS  Google Scholar 

  6. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  7. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)

    Article  ADS  Google Scholar 

  8. Fanchini, F.F., Cornelio, M.F., de Oliveira, M.C., Caldeira, A.O.: Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev. A 84, 012313 (2011)

    Article  ADS  Google Scholar 

  9. Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J. Quantum Inf. 9, 1643 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  11. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  12. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  13. Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  14. Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  15. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)

    Article  ADS  Google Scholar 

  16. Hu, X.Y., Fan, H., Zhou, D.L., Liu, W.M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  17. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yuan, J.B., Kuang, L.M., Liao, J.Q.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B 43, 165503 (2010)

    Article  ADS  Google Scholar 

  19. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    ADS  Google Scholar 

  21. He, Q.L., Xu, J.B., Yao, D.X., Zhang, Y.Q.: Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord. Phys. Rev. A 84, 022312 (2011)

    Article  ADS  Google Scholar 

  22. He, Q.L., Xu, J.B.: Sudden transition and sudden change of quantum discord in dissipative cavity quantum electrodynamics system. J. Opt. Soc. Am. B 30, 251 (2013)

    Article  ADS  Google Scholar 

  23. Xu, J.B., Zou, X.B.: Dynamic algebraic approach to the system of a three-level atom in the Λ configuration. Phys. Rev. A 60, 5743 (1999)

    ADS  Google Scholar 

  24. Peixoto de Faria, J.G., Nemes, M.C.: Aspects of the dynamics of a two-level atom dispersively coupled to a damped and driven field mode. Phys. Rev. A 69, 063812 (2004)

    Article  ADS  Google Scholar 

  25. Zhang, J.S., Xu, J.B.: Optimal entanglement generation in cavity QED with dissipation. Can. J. Phys. 87, 1031 (2009)

    Article  ADS  Google Scholar 

  26. Dukalski, M., Blanter, Y.M.: Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity. Phys. Rev. A 82, 052330 (2010)

    Article  ADS  Google Scholar 

  27. Casasa, F., Muruab, A., Nadinic, M.: Efficient computation of the Zassenhaus formula. Comput. Phys. Commun. 183, 2386 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  29. Wu, Y., Yang, X.X.: Jaynes-Cummings model for a trapped ion in any position of a standing wave. Phys. Rev. Lett. 78, 3086 (1997)

    Article  ADS  Google Scholar 

  30. Wu, Y.: Effective Raman theory for a three-level atom in the Λ configuration. Phys. Rev. A 54, 1586 (1996)

    Article  ADS  Google Scholar 

  31. Wu, Y., Yang, X.X.: Effective two-level model for a three-level atom in the Ξ configuration. Phys. Rev. A 56, 2443 (1997)

    Article  ADS  Google Scholar 

  32. Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Preparation of multi-party entangled states using pair-wise perfectly efficient single probe photon four-wave mixing. Phys. Rev. A 69, 063803 (2004)

    Article  ADS  Google Scholar 

  33. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-fa Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, By., Fang, Mf. & Guo, Yn. Dissipative Dynamics of Quantum Discord of Two Strongly Driven Qubits. Int J Theor Phys 53, 921–932 (2014). https://doi.org/10.1007/s10773-013-1882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1882-y

Keywords

Navigation