Skip to main content
Log in

Fractional Noether Theorem Based on Extended Exponentially Fractional Integral

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the new type of fractional integral definition, namely extended exponentially fractional integral introduced by EI-Nabulsi, we study the fractional Noether symmetries and conserved quantities for both holonomic system and nonholonomic system. First, the fractional variational problem under the sense of extended exponentially fractional integral is established, the fractional d’Alembert-Lagrange principle is deduced, then the fractional Euler-Lagrange equations of holonomic system and the fractional Routh equations of nonholonomic system are given; secondly, the invariance of fractional Hamilton action under infinitesimal transformations of group is also discussed, the corresponding definitions and criteria of fractional Noether symmetric transformations and quasi-symmetric transformations are established; finally, the fractional Noether theorems for both holonomic system and nonholonomic system are explored. What’s more, the relationship between the fractional Noether symmetry and conserved quantity are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives—Theory and Applications. Wiley, New York (1993)

    Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Klimek, M.: Fractional sequential mechanics—models with symmetric fractional derivative. Czechoslov. J. Phys. 51(12), 1348–1354 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52(11), 1247–1253 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MATH  Google Scholar 

  12. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A, Math. Theor. 40, 6287–6303 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4756–4767 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Atanacković, T.M.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A, Math. Theor. 41, 095201 (2008)

    Article  ADS  Google Scholar 

  15. Atanacković, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Atanacković, T.M., Pilipović, S.: Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14(1), 94–109 (2011)

    MATH  MathSciNet  Google Scholar 

  17. Jumarie, G.: Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost functions. J. Appl. Math. Comput. 23(1–2), 215–228 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2003)

    ADS  Google Scholar 

  19. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58, 385–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62, 609–614 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herzallah, M.A.E., Baleanu, D.: Fractional Euler-Lagrange equations revisited. Nonlinear Dyn. 69, 977–982 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75(3), 1507–1515 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59, 3110–3116 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Almeida, R.: Fractional variational problems with the Riesz-Caputo derivative. Appl. Math. Lett. 25(2), 142–148 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  30. El-Nabulsi, A.R., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys. 49, 053521 (2008)

    Article  MathSciNet  Google Scholar 

  31. El-Nabulsi, A.R.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos Solitons Fractals 42, 52–61 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. El-Nabulsi, R.A.: Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator. Cent. Eur. J. Phys. 9(1), 250–256 (2011)

    Article  Google Scholar 

  33. El-Nabulsi, A.R.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217, 9492–9496 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. El-Nabulsi, A.R.: A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators. Appl. Math. Lett. 24, 1647–1653 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Frederico, G.S.F., Torres, D.F.M.: Constants of motion for fractional action-like variational problems. Int. J. Appl. Math. 19(1), 97–104 (2006)

    MATH  MathSciNet  Google Scholar 

  36. Frederico, G.S.F., Torres, D.F.M.: Necessary optimality conditions for fractional action-like problems with intrinsic and observer times. J. WSEAS Trans. Math. 7(1), 6–11 (2008)

    MathSciNet  Google Scholar 

  37. Frederico, G.S.F., Torres, D.F.M.: Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times. Int. J. Ecol. Econ. Stat. 9(F07), 74–82 (2007)

    MathSciNet  Google Scholar 

  38. Lao, D.Z.: Fundamentals of the Calculus of Variations. National Defense Industry Press, Beijing (2009) (in Chinese)

    Google Scholar 

  39. Mei, F.X., Wu, H.B.: Dynamics of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant Nos. 10972151 and 11272227), the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province (No. CXLX11_0961), and the Innovation Program for Postgraduate of Suzhou University of Science and Technology (No. SKCX11S_051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, ZX., Zhang, Y. Fractional Noether Theorem Based on Extended Exponentially Fractional Integral. Int J Theor Phys 53, 841–855 (2014). https://doi.org/10.1007/s10773-013-1873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1873-z

Keywords

Navigation