Skip to main content
Log in

Abstract

New results showing connections between structural properties of von Neumann algebras and order theoretic properties of structures of invariant subspaces given by them are proved. We show that for any properly infinite von Neumann algebra M there is an affiliated subspace \({\mathcal{L}} \) such that all important subspace classes living on \({\mathcal{L}} \) are different. Moreover, we show that \({\mathcal{L}} \) can be chosen such that the set of σ-additive measures on subspace classes of \({\mathcal{L}} \) are empty. We generalize measure theoretic criterion on completeness of inner product spaces to affiliated subspaces corresponding to Type I factor with finite dimensional commutant. We summarize hitherto known results in this area, discuss their importance for mathematical foundations of quantum theory, and outline perspectives of further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Amemiya, I., Araki, H.: A remark on Piron’s paper. Publ. Res. Inst. Math. Sci., Ser. A 2, 423–427 (1957)

    Article  MathSciNet  Google Scholar 

  2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–824 (1936)

    Article  Google Scholar 

  3. Buhagiar, D., Chetcuti, E.: Only ‘free’ measures are admissable on F(S) when the inner product space S is incomplete. Proc. Am. Math. Soc. 136(3), 919–923 (2007)

    Article  MathSciNet  Google Scholar 

  4. Buhagiar, D., Chetcuti, E.: Quasi-splitting subspaces in a pre Hilbert space. Math. Nachr. 280(5–6), 479–484 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Algebraic and measure-theoretic properties of classes of subspaces of an inner product space. In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures, pp. 75–120. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  6. Buhagiar, D., Chetcuti, E., Weber, H.: Orthonormal bases and quasi-splitting subspaces in pre-Hilbert spaces. J. Math. Anal. Appl. 345, 725–730 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dvurečenskij, A.: Gleason’s Theorem and Its Applications. Kluwer Academic, Boston (1993)

    Book  MATH  Google Scholar 

  8. Hamhalter, J.: Quantum Measure Theory. Kluwer Academic, Boston (2003)

    Book  MATH  Google Scholar 

  9. Hamhalter, J.: Quantum Structures and Operator Algebras. Handbook of Quantum Logic and Quantum Structures: Quantum Structures, pp. 285–333. Elsevier, Amsterdam (2007)

    Book  Google Scholar 

  10. Hamhalter, J., Pták, P.: A completeness criterion for inner product spaces. Bull. Lond. Math. Soc. 19, 259–263 (1987)

    Article  MATH  Google Scholar 

  11. Hamhalter, J., Turilova, E.: Subspace structures in inner product spaces and von Neumann algebras. Int. J. Theor. Phys. 50(12), 3812–3820 (2011). doi:10.1007/s10773-011-0665-6

    Article  MATH  MathSciNet  Google Scholar 

  12. Hamhalter, J., Turilova, E.: Affiliated subspaces and the structure of von Neumann algebras. J. Oper. Theory 69(1), 101–115 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hamhalter, J., Turilova, E.: Affiliated subspaces and infineteness of von Neumann algebra. Math. Nachr. (2013). doi:10.1002/mana201200157

    MathSciNet  Google Scholar 

  14. Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964)

    MATH  MathSciNet  Google Scholar 

  15. Sherstnev, A.N., Turilova, E.A.: Classes of subspaces affiliated with a von Neumann algebra. Russ. J. Math. Phys. 6(4), 426–434 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Takesaki, M.: Theory of Operator Algebras I. Springer, New York (1979)

    Book  MATH  Google Scholar 

  17. Takesaki, M.: Theory of Operator Algebras II. Springer, New York (2003)

    Book  MATH  Google Scholar 

  18. Turilova, E.A.: Properties of closed subspaces affiliated with a von Neumann algebra. In: Gagaev, B.M. (ed.) Algebra and Analysis, Abstracts of Reports of a School-Conference Dedicated to the 100th Anniversaly, Kazan, June 16–22, pp. 219–220 (1997)

    Google Scholar 

  19. Turilova, E.A.: Properties of subspace classes of inner product spaces affiliated to von Neumann algebras. Ph.D. Thesis, Kazan State University (2003)

  20. Turilova, E.A.: On certain classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra B(H) associated with a weight. Russ. Math. 50(9), 55–62 (2006). Translation from Izv. Vysš. Učebn. Zaved., Mat. 2006(9), 58–66 (2006)

    MathSciNet  Google Scholar 

  21. Turilova, E.A.: Measures on classes of subspaces affiliated with a von Neumann algebra. Int. J. Theor. Phys. 48(11), 3083–3091 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the ’Grant Agency of the Czech Republic’ grant number P201/12/0290, “Topological and geometrical properties of Banach spaces and operator algebras”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Turilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamhalter, J., Turilova, E. Classes of Invariant Subspaces for Some Operator Algebras. Int J Theor Phys 53, 3397–3408 (2014). https://doi.org/10.1007/s10773-013-1740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1740-y

Keywords

Navigation