Skip to main content
Log in

Cryptanalysis of the Quantum Group Signature Protocols

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, the researches of quantum group signature (QGS) have attracted a lot of attentions and some typical protocols have been designed for e-payment system, e-government, e-business, etc. In this paper, we analyze the security of the quantum group signature with the example of two novel protocols. It can be seen that both of them cannot be implemented securely since the arbitrator cannot solve the disputes fairly. In order to show that, some possible attack strategies, which can be used by the malicious participants, are proposed. Moreover, the further discussions of QGS are presented finally, including some insecurity factors and improved ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search (1996). arXiv:quant-ph/9605043v3

  3. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)

    Article  ADS  MATH  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  16. Gottesman, D., Chuang, I.: Quantum digital signatures (2001). arXiv:quant-ph/0105032v2

  17. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  18. Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages, pp. 449–458. IEEE Computer Society Press, Washington (2002)

    Google Scholar 

  19. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  21. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  23. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)

    Article  ADS  Google Scholar 

  24. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China, Ser. G, Phys. Mech. Astron. 51, 1079–1088 (2008)

    Article  ADS  MATH  Google Scholar 

  25. Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)

    Article  ADS  Google Scholar 

  27. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307 (2010)

    Article  ADS  Google Scholar 

  28. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc (2012). doi:10.1007/s11128-011-0258-6

    ADS  Google Scholar 

  29. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for Byzantine agreement and Liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  30. Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of W-class states. Int. J. Quantum Inf. 11(1), 1350010 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Brádler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  34. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  35. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  36. W’ojcik, A.: Eavesdropping on the ¡°ping-pong¡± quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  37. W’ojcik, A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  38. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  39. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  40. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  41. Cai, Q.Y.: The “Ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  42. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  43. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  44. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  45. Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)

    Article  ADS  Google Scholar 

  46. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  47. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  48. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  49. Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Article  ADS  Google Scholar 

  50. Wen, X.J.: Quantum group blind signature scheme without entanglement. Phys. Scr. 82, 065403 (2010)

    Article  Google Scholar 

  51. Xu, R., Huang, L.S., Yang, W., He, L.B.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654–3658 (2011)

    Article  ADS  Google Scholar 

  52. Zhou, N.R., Liu, Y., Zeng, G.H., Xiong, J., Zhu, F.C.: Novel qubit block encryption algorithm with hybrid keys. Physica A 375, 693–698 (2007)

    Article  ADS  Google Scholar 

  53. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. (2013). doi:10.1007/s11128-013-0554-4

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61103210, 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2011YB01, 2012RC0612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, KJ., Sun, Y., Song, TT. et al. Cryptanalysis of the Quantum Group Signature Protocols. Int J Theor Phys 52, 4163–4173 (2013). https://doi.org/10.1007/s10773-013-1729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1729-6

Keywords

Navigation