Skip to main content

Advertisement

Log in

A Modified Dark Energy Model and Quintessence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The observational data indicate that about 70 % of the total energy density of the current state universe has been occupied by Dark Energy. This is said to be the cause of the accelerated expansion of universe. In this letter we shall use a curvature constant as a scalar field in the quintessence Dark Energy model, for an isotropic universe. Connected to the so-called model, we will specify a definite dynamical field equation from the initial action of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess, A.G., et al. (Supernova Search Team Collaboration): Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al. (Supernova Cosmology Project Collaboration): Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Astier, P., et al. (The SNLS Collaboration): Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  4. Riess, A.G., et al. (Supernova Search Team Collaboration): Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  5. Riess, A.G., et al.: Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  6. Wood-Vasey, W.M., et al. (ESSENCE Collaboration): Astrophys. J. 666, 694 (2007)

    Article  ADS  Google Scholar 

  7. Davis, T.M., et al.: Astrophys. J. 666, 716 (2007)

    Article  ADS  Google Scholar 

  8. Kowalski, M., et al. (Supernova Cosmology Project Collaboration): Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  9. Spergel, D.N., et al. (WMAP Collaboration): Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  10. Spergel, D.N., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  11. Komatsu, E., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  12. Komatsu, E., et al.: arXiv:1001.4538 [astro-ph.CO]

  13. Eisenstein, D.J., et al. (SDSS Collaboration): Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  14. Percival, W.J., Cole, S., Eisenstein, D.J., Nichol, R.C., Peacock, J.A., Pope, A.C., Szalay, A.S.: Mon. Not. R. Astron. Soc. 381, 1053 (2007)

    Article  ADS  Google Scholar 

  15. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  16. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kachru, S., Kallosh, R., Linde, A.D., Trivedi, S.P.: Phys. Rev. D 68, 046005 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. Capozziello, S.: Int. J. Mod. Phys. D 11, 483 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Capozziello, S., Carloni, S., Troisi, A.: Recent Res. Dev. Astron. Astrophys. 1, 625 (2003)

    Google Scholar 

  20. Capozziello, S., Cardone, V.F., Carloni, S., Troisi, A.: Int. J. Mod. Phys. D 12, 1969 (2003)

    Article  ADS  Google Scholar 

  21. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  22. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. Amendola, L.: Phys. Rev. D 60, 043501 (1999)

    Article  ADS  Google Scholar 

  24. Uzan, J.P.: Phys. Rev. D 59, 123510 (1999)

    Article  ADS  Google Scholar 

  25. Chiba, T.: Phys. Rev. D 60, 083508 (1999)

    Article  ADS  Google Scholar 

  26. Bartolo, N., Pietroni, M.: Phys. Rev. D 61, 023518 (2000)

    Article  ADS  Google Scholar 

  27. Perrotta, F., Baccigalupi, C., Matarrese, S.: Phys. Rev. D 61, 023507 (2000)

    Article  ADS  Google Scholar 

  28. Dvali, G.R., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Fujii, Y.: Phys. Rev. D 26, 2580 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ford, L.H.: Phys. Rev. D 35, 2339 (1987)

    Article  ADS  Google Scholar 

  31. Wetterich, C.: Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  32. Ratra, B., Peebles, J.: Phys. Rev. D 37, 321 (1988)

    Article  Google Scholar 

  33. Chiba, T., Sugiyama, N., Nakamura, T.: Mon. Not. R. Astron. Soc. 289, L5 (1997)

    Article  ADS  Google Scholar 

  34. Ferreira, P.G., Joyce, M.: Phys. Rev. Lett. 79, 4740 (1997)

    Article  ADS  Google Scholar 

  35. Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  36. Tanhayi, M.R., Fathi, M., Takook, M.V.: Mod. Phys. Lett. A 26(32), 2403–2410 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  38. Payandeh, F., Fathi, M.: Int. J. Theor. Phys. 52, 2284–2295 (2013). doi:10.1007/s10773-013-1509-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported under a research grant by Islamic Azad University, Central Tehran Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Zare Dehnavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare Dehnavi, N., Fathi, M. & Tavakoli, F. A Modified Dark Energy Model and Quintessence. Int J Theor Phys 52, 3886–3891 (2013). https://doi.org/10.1007/s10773-013-1698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1698-9

Keywords

Navigation