Skip to main content
Log in

Effects of Cavity-Field Statistics on Atomic Entanglement in Two-Mode Jaynes-Cummings Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the entanglement properties of a pair of two-level Rydberg atoms passing one after another into a lossless cavity with two modes. The initial joint state of two successive atoms that enter the cavity is unentangled. Interactions mediated by the cavity field results in the final two-atom mixed entangled type state. The entanglement of formation of the joint two-atom state as a function of the Rabi angle gt is calculated for Fock state field, coherent field and thermal field respectively inside the cavity. We present a comparative study of two-atom entanglement corresponding to the different field statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer, Berlin (2000)

    MATH  Google Scholar 

  3. Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  4. Rempe, G., Walther, H., Klein, N.: Phys. Rev. Lett. 57, 353 (1987)

    Article  ADS  Google Scholar 

  5. Kaluzny, Y., Goy, P., Gross, M., Raimond, J.M., Haroche, S.: Phys. Rev. Lett. 51, 1175 (1983)

    Article  ADS  Google Scholar 

  6. Brune, M., Raimond, J.M., Goy, P., Davidovich, L., Haroche, S.: Phys. Rev. Lett. 59, 1899 (1987)

    Article  ADS  Google Scholar 

  7. Benett, C.H., Bernstein, H.J., Popescrece, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  8. Benett, C.H., Di Vincenzo, D.P., Smolin, J., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Vedral, V., Plenio, M.B.: Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  10. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 80, 5239 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  12. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  13. Ghosh, B., Majumdar, A.S., Nayak, N.: Int. J. Quantum Inf. 5, 169 (2007)

    Article  MATH  Google Scholar 

  14. Datta, A., Ghosh, B., Majumdar, A.S., Nayak, N.: Europhys. Lett. 67, 934 (2004)

    Article  ADS  Google Scholar 

  15. Saha, P., Majumdar, A.S., Singh, S., Nayak, N.: Int. J. Quantum Inf. 8(8), 1397 (2010)

    Article  MATH  Google Scholar 

  16. Gou, S.C.: Phys. Rev. A 40, 5116 (1989)

    Article  ADS  Google Scholar 

  17. Ashraf, M.M.: Phys. Rev. A 50(6), 5116 (1994)

    Article  ADS  Google Scholar 

  18. Singh, S.: Pramana 66, 615 (2006)

    Article  ADS  Google Scholar 

  19. Tessier, T., Delgado, A., Fuentes-Guridi, I., Deutsch, I.H.: Phys. Rev. A 68, 062316 (2003)

    Article  ADS  Google Scholar 

  20. Ghosh, B., Majumdar, A.S., Nayak, N.: Int. J. Theor. Phys. 13, 86 (2009)

    Google Scholar 

  21. Kim, M.S., Lee, J.-H., Ahn, D., Knight, P.L.: Phys. Rev. A 65, 040101 (2002)

    Article  ADS  Google Scholar 

  22. Nayak, N.: Opt. Commun. 118, 114 (1995)

    Article  ADS  Google Scholar 

  23. Nayak, N., Majumdar, A.S., Bartzis, V.: Nonlinear Opt. 24, 319 (2000)

    Google Scholar 

  24. Ghosh, B., Majumdar, A.S., Nayak, N.:. arXiv:quant-ph/0603039

  25. Bashkirov, E.K., Stupatskaya, M.P.: Laser Phys. 19, 525 (2009)

    Article  ADS  Google Scholar 

  26. Ghosh, B., Majumdar, A.S., Nayak, N.: Phys. Rev. A 74, 052315 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first author (Sudha Singh) wishes to acknowledge the support from the University Grants Commission (UGC, New Delhi, India) in the form of a Major Research Project (F.No. 37-327/2009 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Amrita Effects of Cavity-Field Statistics on Atomic Entanglement in Two-Mode Jaynes-Cummings Model. Int J Theor Phys 52, 3874–3885 (2013). https://doi.org/10.1007/s10773-013-1697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1697-x

Keywords

Navigation