Skip to main content
Log in

Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory

International Journal of Theoretical Physics Aims and scope Submit manuscript

Cite this article

Abstract

It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bunce, L.J., Wright, J.D.M.: The Mackey Gleason problem. Bull. Am. Math. Soc. 26(2), 288–293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Connes, A.: A factor not isomorphic to itself. Ann. Math. 101(3), 536–554 (1962)

    Article  MathSciNet  Google Scholar 

  3. Döring, A., Isham, C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49, 953518 (2008)

    Google Scholar 

  4. Döring, A., Harding, J.: Abelian subalgebras and the Jordan structure of von Neuman algebras. arXiv:1009.4945v1

  5. Döring, A.: Generalised Gelfand Spectra of Nonabelian Unital C -Algebras I: Categorical Aspects, Automorphisms and Jordan Structure. arXiv:1212.2613

  6. Döring, A.: Generalised Gelfand Spectra of Nonabelian Unital C -Algebras II: Flows and Time Evolution of Quantum Systems. arXiv:1212.4882

  7. Emch, G.G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Dover, New York (2009)

    Google Scholar 

  8. Hamhalter, J.: Quantum Measure Theory. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  9. Hamhalter, J.: Isomorphisms of ordered structures of Abelian C -subalgebras of C -algebras. J. Math. Anal. Appl. 383, 391–399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamhalter, J., Turilova, E.: Structure of associative subalgebras of Jordan operator algebras. Q. J. Math. 00, 1–12 (2012). doi:10.1093/qmath/has015

    Google Scholar 

  11. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification of operator algebras and quantum logic. Halvorson, H. (ed.): Deep Beauty Understanding the Quantum World Through Mathematical Innovation, Princeton University, pp. 217–313

  12. Heunen, C.: Characterizations of categories of commutative C -subalgebras (2012). arXiv:1106.5942v2

  13. Heunen, C., Reyes, M.L.: Active lattices determine AW-algebras (2012). arXiv:1212.5778v1

  14. Hanche-Olsen, H., Stormer, E.: Jordan Operator Algebras. Pitman, London (1984)

    MATH  Google Scholar 

  15. Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics. Advanced Series in Mathematical Physics, vol. 28. World Scientific, Singapore (2008)

    Google Scholar 

  16. Takesaki, M.: Theory of Operator Algebras I. Springer, New York (1979)

    Book  MATH  Google Scholar 

  17. Takesaki, M.: Theory of Operator Algebras II. Springer, New York (2003)

    Book  MATH  Google Scholar 

  18. Weaver, N.: Mathematical Quantization. Studies in Advanced Mathematics. Chapman & Hall, London (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Grant Agency of the Czech Republic’ grant number P201/12/0290, “Topological and geometrical properties of Banach spaces and operator algebras”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hamhalter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamhalter, J., Turilova, E. Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory. Int J Theor Phys 53, 3333–3345 (2014). https://doi.org/10.1007/s10773-013-1691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1691-3

Keywords

Navigation