Skip to main content
Log in

Local Channels Preserving Maximal Entanglement or Schmidt Number

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is well know that entanglement is invariant under local unitary operations. In this paper we show that a local channel preserves maximal entanglement state (MES) or preserves pure states with Schmidt number r (r is an arbitrarily fixed integer) if and only if it is a local unitary operation. That is, the only local channel that leaves entanglement invariant is the local unitary operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodeck, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  Google Scholar 

  2. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  4. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  5. Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)

    Article  ADS  Google Scholar 

  6. Hu, X., Fan, H., Zhou, D.L., Liu, W.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  7. Yu, S., Zhang, C., Chen, Q., Oh, C.H.: Quantum channels that preserve the commutativity (2011). arXiv:1112.5700v1

  8. Guo, Y., Hou, J.: Necessary and sufficient conditions for the local creation of quantum discord. J. Phys. A, Math. Theor. 46, 155301 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  9. Li, Z., Zhao, M., Fei, S., Fan, H., Liu, W.: Mixed maximally entangled states. Quantum Inf. Comput. 12, 63–73 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Miranowicz, A., Ishizaka, S., Horst, B., Grudka, A.: Comparison of the relative entropy of entanglement and negativity. Phys. Rev. A 78, 052308 (2008)

    Article  ADS  Google Scholar 

  16. Terhal, B., Horodecki, P.: Schmidt number for density matrices. Phys. Rev. A 61, 040301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63, 050301 (2001)

    Article  ADS  Google Scholar 

  18. Sperling, J., Vogel, W.: The Schmidt number as a universal entanglement measure. Phys. Scr. 83, 045002 (2011)

    Article  ADS  Google Scholar 

  19. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Gao, X., Sergio, A., Chen, K., Fei, S., Li-Jost, X.Q.: Entanglement of formation and concurrence for mixed states. Front. Comput. Sci. China 2(2), 114–128 (2008)

    Article  Google Scholar 

  21. Guo, Y., Hou, J., Wang, Y.: Concurrence for infinite-dimensioanl quantum systems (2012). arXiv:1203.3933v1 [quant-ph]

  22. Horodecki, P., Horodecki, R.: Distillation and bound entanglement. Quantum Inf. Comput. 1(1), 45–75 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  24. Cavalcanti, D., Brandão, F.G.S.L., Terra Cunha, M.O.: Are all maximally entangled states pure? Phys. Rev. A 72, 040303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Cubitt, T.S., Ruskai, M.B., Smith, G.: The structure of degradable quantum channels. J. Math. Phys. 49, 102104 (2008)

    Article  MathSciNet  Google Scholar 

  26. Vidal, G.: Entanglement monotone. J. Mod. Opt. 47, 355 (2000)

    MathSciNet  ADS  Google Scholar 

  27. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  28. Fan, H., Matsumoto, K., Imai, H.: Quantify entanglement by concurrence hierarchy. J. Phys. A, Math. Gen. 36, 4151–4158 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Donald, M.J., Horodecki, M., Rudolph, O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Buscemi, F., Datta, N.: Entanglement cost in practical scenarios. Phys. Rev. Lett. 106, 130503 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. Guo is supported by the China Postdoctoral Science Foundation funded project (Grant No. 2012M520603), the Natural Science Foundation of Shanxi (2013021001-1, 2012011001-2), the Research start-up fund for Doctors of Shanxi Datong University (Grant No. 2011-B-01) and the Natural Science Foundation of China (Grant Nos. 11171249, 11101250). Z. Bai and S. Du are supported by the Natural Science Foundation of China (Grants No. 11001230) and the Natural Science Foundation of Fujian (2013J01011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofang Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Bai, Z. & Du, S. Local Channels Preserving Maximal Entanglement or Schmidt Number. Int J Theor Phys 52, 3820–3829 (2013). https://doi.org/10.1007/s10773-013-1688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1688-y

Keywords

Navigation