Skip to main content

Time-Symmetric Quantization in Spacetimes with Event Horizons

Abstract

The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a “reinterpretation postulate” to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Extension to Hilbert-Krein space has been proposed also in [12] to maintain a de Sitter covariant quantization.

References

  1. 1.

    Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974)

    ADS  Article  Google Scholar 

  2. 2.

    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    ADS  Article  MathSciNet  Google Scholar 

  3. 3.

    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    ADS  Article  MathSciNet  Google Scholar 

  4. 4.

    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). arXiv:hep-th/9905111 and references therein

    ADS  Article  MathSciNet  Google Scholar 

  5. 5.

    Mathur, S.D.: The Fuzzball proposal for black holes: an elementary review. Fortschr. Phys. 53, 793 (2005). arXiv:hep-th/0502050 and references therein

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Dvali, G., Gomez, C.: arXiv:1112.3359 [hep-th] (2011)

  7. 7.

    Dvali, G., Gomez, C.: arXiv:1203.6575 [hep-th] (2012)

  8. 8.

    Fulling, S.A.: Phys. Rev. D 7, 2850 (1973)

    ADS  Article  Google Scholar 

  9. 9.

    Davies, P.C.W.: J. Phys. A 8, 609 (1975)

    ADS  Article  Google Scholar 

  10. 10.

    Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    ADS  Article  Google Scholar 

  11. 11.

    Visser, M.: Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 12, 649 (2003). arXiv:hep-th/0106111

    ADS  MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Gazeau, J.P., Renaud, J., Takook, M.V.: Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space. Class. Quantum Gravity 17, 1415 (2000). arXiv:gr-qc/9904023

    ADS  MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)

    ADS  Article  Google Scholar 

  14. 14.

    Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21, 425 (1949)

    ADS  MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Garidi, T., Huguet, E., Renaud, J.: Krein space quantization in curved and flat spacetimes. J. Phys. A, Math. Gen. 38, 245 (2005)

    ADS  MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Dhar, J., Sudarshan, E.C.G.: Quantum field theory of interacting tachyons. Phys. Rev. 174, 1808 (1968)

    ADS  Article  Google Scholar 

  17. 17.

    Bekenstein, J.D.: Black holes and the second law. Lett. Nuovo Cimento 4, 737 (1972)

    ADS  Article  Google Scholar 

  18. 18.

    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    ADS  Article  MathSciNet  Google Scholar 

  19. 19.

    Bekenstein, J.D.: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (1974)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ray Volkas for reading the manuscript and making comments. The work was partially supported by the ARC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Archil Kobakhidze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kobakhidze, A., Rodd, N. Time-Symmetric Quantization in Spacetimes with Event Horizons. Int J Theor Phys 52, 2636–2642 (2013). https://doi.org/10.1007/s10773-013-1554-y

Download citation

Keywords

  • Time-symmetric quantization
  • Hawking-Unruh radiation