International Journal of Theoretical Physics

, Volume 52, Issue 5, pp 1379–1398 | Cite as

Formal Features of a General Theoretical Framework for Decoherence in Open and Closed Systems

Article

Abstract

Two complementary decoherence formalisms, Environment Induced Decoherence (EID) for open systems and Self Induced Decoherence (SID) for close systems are compared under a common General Theoretical Formalism for Decoherence (GTFD). The differences and similarities of EID and SID are studied, e.g. that the main difference is that EID only considers the relevant information of the proper system S and neglects the rest, while SID considers all possible information available from a certain class of measurement instruments and neglects the non-available information.

Keywords

Decoherence Preferred basis Relaxation time Decoherence time 

References

  1. 1.
    Castagnino, M., et al.: Class. Quantum Gravity 25, 154002 (2008) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Castagnino, M., Fortin, S.: Mod. Phys. Lett. A 26, 2365 (2011) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Omnés, R.: Phys. Rev. A 65, 052119 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Omnés, R.: Decoherence: an irreversible process (2001). arXiv:quant-ph/0106006v1
  5. 5.
    Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H.W., Hartmann, S., Okasha, S. (eds.) Philosophical Issues in the Sciences, vol. 3, pp. 161–174. Springer, Berlin (2012) Google Scholar
  6. 6.
    Castagnino, M., Laura, R.: Phys. Rev. A 56, 108–119 (1997) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Laura, R., Castagnino, M.: Phys. Rev. A 57, 4140–4152 (1998) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Laura, R., Castagnino, M.: Phys. Rev. E 57, 3948–3961 (1998) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Castagnino, M.: Int. J. Theor. Phys. 38, 1333–1348 (1999) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1737–1765 (2000) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Castagnino, M., Lombardi, O.: Int. J. Theor. Phys. 42, 1281–1299 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Castagnino, M.: Physica A 335, 511 (2004) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695–719 (2004) MATHCrossRefGoogle Scholar
  15. 15.
    Castagnino, M., Gadella, M.: Found. Phys. 36, 920–952 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    van Hove, L.: Physica 23, 441 (1957) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    van Hove, L.: Physica 25, 268 (1959) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Castagnino, M., Fortin, S.: Int. J. Theor. Phys. 50, 2259–2267 (2011) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Heidelberg (2002) Google Scholar
  20. 20.
    Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, vol. 26, pp. 1862–1880. Cambridge University Press, Cambridge (1982) Google Scholar
  21. 21.
    Zurek, W.H.: Phys. Rev. D 26, 1862–1880 (1982) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Zurek, W.H.: Prog. Theor. Phys. 89, 281 (1993) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1994) Google Scholar
  25. 25.
    Zurek, W.H.: Decoherence, einselection, and the existential interpretation (1998). arXiv:quant-ph/9805065
  26. 26.
    Knill, E., Laflamme, R., Barnum, H., Dalvit, D., Dziarmaga, J., Gubernatis, J., Gurvits, L., Ortiz, G., Viola, L., Zurek, W.H.: Los Alamos Sci. 27, 2 (2002) Google Scholar
  27. 27.
    Castagnino, M., Lombardi, O.: Stud. Hist. Philos. Mod. Phys. 35, 73 (2004) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mackey, M.C.: Rev. Mod. Phys. 61, 981–1015 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007) Google Scholar
  30. 30.
    Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.Z.: Physica A 241, 737–772 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    Castagnino, M., Gailoli, F., Gunzig, E.: Found. Cosmic Phys. 16, 221–375 (1996) ADSGoogle Scholar
  32. 32.
    Nakajima, S.: Prog. Theor. Phys. 20, 948–959 (1958) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Castagnino, M., Fortin, S.: J. Phys. A, Math. Theor. 45, 444009 (2012) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Castagnino, M., Fortin, S.: On a possible definition of the moving preferred basis. arXiv:1009.0535v2 (2010)
  36. 36.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992) MATHCrossRefGoogle Scholar
  37. 37.
    Bleistein, N., Handelsman, R.: Asymptotic Expansion of Integrals. Dover, New York (1986) Google Scholar
  38. 38.
    Casati, G., Prosen, T.: Phys. Rev. A 72, 032111 (2005) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Castagnino, M.: Physica A 335, 511–517 (2004) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695–719 (2005) CrossRefGoogle Scholar
  41. 41.
    Halvorson, H.: Algebraic quantum field theory. In: Butter, J., Earman, J. (eds.) Handbook of the Philosophy of Science: Philosophy of Physics, Part A. Elsevier, Amsterdam (2007). eprint: arXiv:math-ph/0602036v1 Google Scholar
  42. 42.
    Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1979) CrossRefGoogle Scholar
  43. 43.
    Ballentine, L.E.: Quantum Mechanics. Prentice Hall, New York (1990) Google Scholar
  44. 44.
    Trèves, A.: Topological Vector Space, Distribution and Kernels. Academic Press, New York (1967) Google Scholar
  45. 45.
    Iguri, S.M., Castagnino, M.A.: J. Math. Phys. 49, 033510 (2008) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Castagnino, M., Ordóñez, A.: Algebraic formulation of quantum decoherence. Int. J. Math. Phys. 43, 695–719 (2004) MATHCrossRefGoogle Scholar
  47. 47.
    Castagnino, M., Lombardi, O.: Stud. Hist. Philos. Sci. 35, 73–107 (2004) MathSciNetMATHGoogle Scholar
  48. 48.
    Bohm, A.: Quantum Mechanics, Foundations and Applications. Springer, Berlin (1986) MATHCrossRefGoogle Scholar
  49. 49.
    Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000) ADSCrossRefGoogle Scholar
  50. 50.
    Castagnino, M., Fortin, S.: Defining the moving preferred basis in closed systems (2012, in preparation) Google Scholar
  51. 51.
    Castagnino, M., Lombardi, O.: Phys. Rev. A 72, 012102 (2005) MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1737–1765 (2000) MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Gambini, R., Pulin, J.: Found. Phys. 37, 7 (2007) CrossRefGoogle Scholar
  54. 54.
    Gambini, R., Porto, R.A., Pulin, J.: Gen. Relativ. Gravit. 39, 8 (2007) CrossRefGoogle Scholar
  55. 55.
    Gambini, R., Pulin, J.: Modern space-time and undecidability. In: Petkov, V. (ed.) Fundamental Theories of Physics (Minkowski Spacetime: A Hundred Years Later), vol. 165. Springer, Heidelberg (2010) Google Scholar
  56. 56.
    Castagnino, M., Lombardi, O.: Physica A 388, 247–267 (2009) MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Lombardi, O., Castagnino, M.: Stud. Hist. Philos. Sci. 39, 380–443 (2008) MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Castagnino, M., Lombardi, O.: J. Phys. Conf. Ser. 128, 012014 (2008) ADSCrossRefGoogle Scholar
  59. 59.
    Rothe, C., Hintschich, S.I., Monkman, A.P.: Phys. Rev. Lett. 96, 163601 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CONICET, IAFE (CONICET-UBA), IFIR and FCEN (University of Buenos Aires)Buenos AiresArgentina
  2. 2.CONICET, IAFE (CONICET-UBA) and FCEN (University of Buenos Aires)Buenos AiresArgentina

Personalised recommendations