Skip to main content
Log in

Holographic Ricci Dark Energy Model with Non-constant c 2 Term

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study holographic Ricci dark energy model with non-constant c 2 term in dark energy density formula. We consider FRW metric in flat space-time and calculate density. Also we find scale factor and Hubble expansion parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Riess, A.G., et al. (Supernova Search Team): Astron. J. 116, 100938 (1998)

    Article  Google Scholar 

  2. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  3. Perlmutter, S., et al. (The Supernova Cosmology Project): Astrophys. J. 517, 56586 (1999)

    Article  Google Scholar 

  4. Perlmutter, S., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  5. Spergel, D.N., et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007). astro-ph/0603449

    Article  ADS  Google Scholar 

  6. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  7. Komatsu, E., et al. (WMAP Collaboration): Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009). arXiv:0803.0547 [astro-ph]

    Article  ADS  Google Scholar 

  8. Adelman-McCarthy, J.K., et al. (SDSS Collaboration): The sixth data release of the sloan digital sky survey. Astrophys. J. Suppl. Ser. 175, 297 (2008). arXiv:0707.3413 [astro-ph]

    Article  ADS  Google Scholar 

  9. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). astro-ph/0310723

    Article  ADS  Google Scholar 

  10. Tegmark, M., et al.: The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702 (2004). astro-ph/0310725

    Article  ADS  Google Scholar 

  11. Frieman, J.A., et al.: Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  12. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  13. Caldwell, R.R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005)

    Article  ADS  Google Scholar 

  14. Carvalho, F.C., et al.: Phys. Rev. Lett. 97, 081301 (2006)

    Article  ADS  Google Scholar 

  15. Jassal, H.K., Bagla, J.S., Padmanabhan, T.: Understanding the origin of CMB constraints on Dark Energy. Mon. Not. R. Astron. Soc. 405, 2639–2650 (2010). astro-ph/0601389

    ADS  Google Scholar 

  16. Davis, T.M., et al.: Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 666, 716 (2007). astro-ph/0701510

    Article  ADS  Google Scholar 

  17. Samushia, L., Ratra, B.: Constraints on dark energy from galaxy cluster gas mass fraction versus Redshift data. Astrophys. J. 680(1), L1–L4 (2008). arXiv:0803.3775 [astro-ph]

    Article  ADS  Google Scholar 

  18. Sadeghi, J., Saadat, H., Pourhassan, B.: Relation between dark matter density and temperature with power law. Chaos Solitons Fractals 42, 1080 (2009)

    Article  ADS  Google Scholar 

  19. Saadat, H.: Solar system and dark matter. Chaos Solitons Fractals 42, 2236 (2009)

    Article  ADS  Google Scholar 

  20. Saadat, H., et al.: The effect of dark matter on solar system and perihelion precession of Earth planet. Int. J. Theor. Phys. 49(10), 2506 (2010)

    Article  MATH  Google Scholar 

  21. Saadat, H.: Relation between the dark energy density and temperature. Int. J. Theor. Phys. 50(1), 140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomas, S.D.: Phys. Rev. Lett. 89, 081310 (2002)

    ADS  Google Scholar 

  23. Horava, P., Minic, D.: Phys. Lett. 85, 1610 (2000)

    Article  MathSciNet  Google Scholar 

  24. Zhao, W.: Phys. Lett. B 655, 99 (2007)

    ADS  Google Scholar 

  25. Li, H., Guo, Z.K., Zhang, Y.Z.: Int. J. Mod. Phys. D 15, 869 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Hu, B., Ling, Y.: Phys. Rev. D 73, 123510 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. Wang, B., Gong, Y., Abdalla, E.: Phys. Lett. 624, 141 (2005)

    Google Scholar 

  28. Saadat, H., Saadat, A.M.: Time-dependent dark energy density and holographic DE model with interaction. Int. J. Theor. Phys. 50, 1358–1366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saadat, H.: Holographic dark energy density. Int. J. Theor. Phys. 50, 1769–1775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jassal, H.K., Bagla, J.S., Padmanabhan, T.: Mon. Not. R. Astron. Soc. 356, L11 (2005)

    ADS  Google Scholar 

  31. Saadat, H., et al.: Holographic dark energy density and JBP parametrization. Int. J. Theor. Phys. (2001) doi:10.1007/s10773-011-0787-x

    Google Scholar 

  32. Saadat, H.: Hubble expansion parameter in a new model of dark energy. Int. J. Theor. Phys. 51, 78–82 (2012). doi:10.1007/s10773-011-0879-7

    Article  MATH  Google Scholar 

  33. Barboza, E.M. Jr., Alcaniz, J.S.: Probing the time dependence of dark energy arXiv:1103.0257 [astro-ph.CO]

  34. Zhang, X.: Phys. Rev. D 79, 103509 (2009)

    Article  ADS  Google Scholar 

  35. Xu, L., Wang, Y.: J. Cosmol. Astropart. Phys. 06, 002 (2010)

    Article  ADS  Google Scholar 

  36. Gao, C., Wu, F., Chen, X., Shen, Y.-G.: Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  37. Wang, Y., Xu, L.: Phys. Rev. D 81, 083523 (2010)

    Article  ADS  Google Scholar 

  38. Chimento, L.P., Monica Forte, a., Richarte, M.G.: A modified Ricci scalar as an interacting model of holographic dark energy. arXiv:1106.0781 [astro-ph.CO]

  39. Rong-Gen, C., Bin, H., Yi, Z.: Holography, UV/IR relation, causal entropy bound, and dark energy. Commun. Theor. Phys. 51, 954–960 (2009)

    Article  ADS  MATH  Google Scholar 

  40. Saadat, H.: Holographic Ricci dark energy model. Int. J. Theor. Phys. 51, 731–737 (2012). doi:10.1007/s10773-011-0952-2

    Article  MATH  Google Scholar 

  41. Radicella, N., Pavon, D.: On the c 2 term in the holographic formula for dark energy. J. Cosmol. Astropart. Phys. 10, 005 (2010)

    Article  ADS  Google Scholar 

  42. Pavon, D., Zimdahl, W.: Holographic dark energy and cosmic coincidence. Phys. Lett. B 628, 206 (2005). arXiv:gr-qc/0505020

    Article  ADS  Google Scholar 

  43. Pavon, D.: Holographic dark energy and late cosmic acceleration. J. Phys. A 40, 6865 (2007). arXiv:gr-qc/0610008

    Article  ADS  Google Scholar 

  44. Guberina, B., Horvat, R., Nikolic, H.: Nonsaturated holographic dark energy. J. Cosmol. Astropart. Phys. 01, 012 (2007). arXiv:astro-ph/0611299

    Article  ADS  Google Scholar 

  45. Xu, L.: Holographic dark energy model with hubble horizon as an IR cut-off. J. Cosmol. Astropart. Phys. 09, 016 (2009). arXiv:0907.1709

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Saadat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadat, H. Holographic Ricci Dark Energy Model with Non-constant c 2 Term. Int J Theor Phys 52, 1027–1032 (2013). https://doi.org/10.1007/s10773-012-1416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1416-z

Keywords

Navigation