International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 1027–1032 | Cite as

Holographic Ricci Dark Energy Model with Non-constant c2 Term

Article

Abstract

In this paper, we study holographic Ricci dark energy model with non-constant c2 term in dark energy density formula. We consider FRW metric in flat space-time and calculate density. Also we find scale factor and Hubble expansion parameter.

Keywords

Dark energy Holographic Ricci scalar energy 

References

  1. 1.
    Riess, A.G., et al. (Supernova Search Team): Astron. J. 116, 100938 (1998) CrossRefGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Astrophys. J. 607, 665 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    Perlmutter, S., et al. (The Supernova Cosmology Project): Astrophys. J. 517, 56586 (1999) CrossRefGoogle Scholar
  4. 4.
    Perlmutter, S., et al.: Nature 391, 51 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    Spergel, D.N., et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007). astro-ph/0603449 ADSCrossRefGoogle Scholar
  6. 6.
    Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 148, 175 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    Komatsu, E., et al. (WMAP Collaboration): Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009). arXiv:0803.0547 [astro-ph] ADSCrossRefGoogle Scholar
  8. 8.
    Adelman-McCarthy, J.K., et al. (SDSS Collaboration): The sixth data release of the sloan digital sky survey. Astrophys. J. Suppl. Ser. 175, 297 (2008). arXiv:0707.3413 [astro-ph] ADSCrossRefGoogle Scholar
  9. 9.
    Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). astro-ph/0310723 ADSCrossRefGoogle Scholar
  10. 10.
    Tegmark, M., et al.: The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702 (2004). astro-ph/0310725 ADSCrossRefGoogle Scholar
  11. 11.
    Frieman, J.A., et al.: Phys. Rev. Lett. 75, 2077 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    Caldwell, R.R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Carvalho, F.C., et al.: Phys. Rev. Lett. 97, 081301 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Jassal, H.K., Bagla, J.S., Padmanabhan, T.: Understanding the origin of CMB constraints on Dark Energy. Mon. Not. R. Astron. Soc. 405, 2639–2650 (2010). astro-ph/0601389 ADSGoogle Scholar
  16. 16.
    Davis, T.M., et al.: Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 666, 716 (2007). astro-ph/0701510 ADSCrossRefGoogle Scholar
  17. 17.
    Samushia, L., Ratra, B.: Constraints on dark energy from galaxy cluster gas mass fraction versus Redshift data. Astrophys. J. 680(1), L1–L4 (2008). arXiv:0803.3775 [astro-ph] ADSCrossRefGoogle Scholar
  18. 18.
    Sadeghi, J., Saadat, H., Pourhassan, B.: Relation between dark matter density and temperature with power law. Chaos Solitons Fractals 42, 1080 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Saadat, H.: Solar system and dark matter. Chaos Solitons Fractals 42, 2236 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Saadat, H., et al.: The effect of dark matter on solar system and perihelion precession of Earth planet. Int. J. Theor. Phys. 49(10), 2506 (2010) MATHCrossRefGoogle Scholar
  21. 21.
    Saadat, H.: Relation between the dark energy density and temperature. Int. J. Theor. Phys. 50(1), 140 (2011) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Thomas, S.D.: Phys. Rev. Lett. 89, 081310 (2002) ADSGoogle Scholar
  23. 23.
    Horava, P., Minic, D.: Phys. Lett. 85, 1610 (2000) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, W.: Phys. Lett. B 655, 99 (2007) ADSGoogle Scholar
  25. 25.
    Li, H., Guo, Z.K., Zhang, Y.Z.: Int. J. Mod. Phys. D 15, 869 (2006) ADSMATHCrossRefGoogle Scholar
  26. 26.
    Hu, B., Ling, Y.: Phys. Rev. D 73, 123510 (2006) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Wang, B., Gong, Y., Abdalla, E.: Phys. Lett. 624, 141 (2005) Google Scholar
  28. 28.
    Saadat, H., Saadat, A.M.: Time-dependent dark energy density and holographic DE model with interaction. Int. J. Theor. Phys. 50, 1358–1366 (2011) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Saadat, H.: Holographic dark energy density. Int. J. Theor. Phys. 50, 1769–1775 (2011) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Jassal, H.K., Bagla, J.S., Padmanabhan, T.: Mon. Not. R. Astron. Soc. 356, L11 (2005) ADSGoogle Scholar
  31. 31.
    Saadat, H., et al.: Holographic dark energy density and JBP parametrization. Int. J. Theor. Phys. (2001) doi:10.1007/s10773-011-0787-x Google Scholar
  32. 32.
    Saadat, H.: Hubble expansion parameter in a new model of dark energy. Int. J. Theor. Phys. 51, 78–82 (2012). doi:10.1007/s10773-011-0879-7 MATHCrossRefGoogle Scholar
  33. 33.
    Barboza, E.M. Jr., Alcaniz, J.S.: Probing the time dependence of dark energy arXiv:1103.0257 [astro-ph.CO]
  34. 34.
    Zhang, X.: Phys. Rev. D 79, 103509 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Xu, L., Wang, Y.: J. Cosmol. Astropart. Phys. 06, 002 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    Gao, C., Wu, F., Chen, X., Shen, Y.-G.: Phys. Rev. D 79, 043511 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    Wang, Y., Xu, L.: Phys. Rev. D 81, 083523 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    Chimento, L.P., Monica Forte, a., Richarte, M.G.: A modified Ricci scalar as an interacting model of holographic dark energy. arXiv:1106.0781 [astro-ph.CO]
  39. 39.
    Rong-Gen, C., Bin, H., Yi, Z.: Holography, UV/IR relation, causal entropy bound, and dark energy. Commun. Theor. Phys. 51, 954–960 (2009) ADSMATHCrossRefGoogle Scholar
  40. 40.
    Saadat, H.: Holographic Ricci dark energy model. Int. J. Theor. Phys. 51, 731–737 (2012). doi:10.1007/s10773-011-0952-2 MATHCrossRefGoogle Scholar
  41. 41.
    Radicella, N., Pavon, D.: On the c 2 term in the holographic formula for dark energy. J. Cosmol. Astropart. Phys. 10, 005 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    Pavon, D., Zimdahl, W.: Holographic dark energy and cosmic coincidence. Phys. Lett. B 628, 206 (2005). arXiv:gr-qc/0505020 ADSCrossRefGoogle Scholar
  43. 43.
    Pavon, D.: Holographic dark energy and late cosmic acceleration. J. Phys. A 40, 6865 (2007). arXiv:gr-qc/0610008 ADSCrossRefGoogle Scholar
  44. 44.
    Guberina, B., Horvat, R., Nikolic, H.: Nonsaturated holographic dark energy. J. Cosmol. Astropart. Phys. 01, 012 (2007). arXiv:astro-ph/0611299 ADSCrossRefGoogle Scholar
  45. 45.
    Xu, L.: Holographic dark energy model with hubble horizon as an IR cut-off. J. Cosmol. Astropart. Phys. 09, 016 (2009). arXiv:0907.1709 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physics, Sepidan BranchIslamic Azad UniversitySepidanIran

Personalised recommendations