International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 877–896 | Cite as

On Quantum Mechanics with a Magnetic Field on ℝn and on a Torus \(\mathbb{T}^{n}\), and Their Relation



We show in elementary terms the equivalence in a general gauge of a U(1)-gauge theory of a scalar charged particle on a torus \(\mathbb{T}^{n}=\mathbb{R}^{n}/\varLambda\) to the analogous theory on ℝn constrained by quasiperiodicity under translations in the lattice Λ. The latter theory provides a global description of the former: the quasiperiodic wavefunctions ψ defined on ℝn play the role of sections of the associated hermitean line bundle E on \(\mathbb{T}^{n}\), since also E admits a global description as a quotient. The components of the covariant derivatives corresponding to a constant (necessarily integral) magnetic field B=dA generate a Lie algebra gQ and together with the periodic functions the algebra of observables\(\mathcal {O}_{Q}\). The non-abelian part of gQ is a Heisenberg Lie algebra with the electric charge operator Q as the central generator; the corresponding Lie group GQ acts on the Hilbert space as the translation group up to phase factors. Also the space of sections of E is mapped into itself by gGQ. We identify the socalled magnetic translation group as a subgroup of the observables’ groupYQ. We determine the unitary irreducible representations of \(\mathcal{O}_{Q},Y_{Q}\) corresponding to integer charges and for each of them an associated orthonormal basis explicitly in configuration space. We also clarify how in the n=2m case a holomorphic structure and Theta functions arise on the associated complex torus.

These results apply equally well to the physics of charged scalar particles on ℝn and on \(\mathbb{T}^{n}\) in the presence of periodic magnetic field B and scalar potential. They are also necessary preliminary steps for the application to these theories of the deformation procedure induced by Drinfel’d twists.


Bloch theory with magnetic field Fiber bundles Gauge symmetry Quantization on manifolds 


  1. 1.
    Asch, J., Over, H., Seiler, R.: J. Geom. Phys. 13, 275 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Birkenhake, C., Lange, H.: Complex Abelian Varieties. Springer, Berlin (2004) MATHGoogle Scholar
  3. 3.
    Brüning, J., Sunada, T.: On the spectrum of gauge-periodic elliptic operators. In: Méthodes semi-classiques, Nantes, 1991. Astérisque 210, vol. 2, pp. 65–74 (1992) Google Scholar
  4. 4.
    Drinfel’d, V.G.: Sov. Math. Dokl. 27, 68–71 (1983) MathSciNetMATHGoogle Scholar
  5. 5.
    Drinfel’d, V.G.: Sov. Math. Dokl. 28, 667 (1983) MATHGoogle Scholar
  6. 6.
    Fiore, G.: On twisted symmetries and quantum mechanics with a magnetic field on noncommutative tori. PoS(CNCFG2010)018 Google Scholar
  7. 7.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989) MATHGoogle Scholar
  8. 8.
    Gotay, M.J.: On a full quantization of the torus. In: Antoine, J.P., et al. (eds.) Quantization, Coherent States, and Complex Structures, pp. 55–62. Plenum Press, New York (1995) Google Scholar
  9. 9.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1988) Google Scholar
  10. 10.
    Gruber, M.J.: J. Geom. Phys. 34, 137–154 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Igusa, J.: Theta Functions. Die Grundlehren der Mathem. Wiss., vol. 194. Springer, Berlin (1972) MATHCrossRefGoogle Scholar
  12. 12.
    Kastrup, H.A.: Phys. Rev. A 73, 052104 (2006). For a historical introduction see e.g. Chap. 1 in Kastrup, H. A., Fortschr. Phys. 51, 975–1134 (2003). (expanded version in arXiv:quant-ph/0307069), and references therein MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Kirillov, A.A.: Geometric quantization. In: Arnol’d, V.I., Novikov, S.P. (eds.) Dynamical Systems IV: Symplectic Geometry and Its Applications. Encyclopaedia Math. Sci., vol. IV, pp. 137–172. Springer, New York (2001) Google Scholar
  14. 14.
    Kostant, B.: Quantization and unitary representations. I. Prequantization. In: Lecture Notes in Mathematics, vol. 170, pp. 87–208. Springer, Berlin (1970) Google Scholar
  15. 15.
    Louisell, W.H.: Phys. Lett. 7, 60 (1963) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Benjamin, New York (1963) MATHGoogle Scholar
  17. 17.
    Morariu, B., Polychronakos, A.P.: Nucl. Phys. B 610, 531–544 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Mumford, D.: Tata Lectures on Theta I. Birkhäuser, Boston (1983) MATHGoogle Scholar
  19. 19.
    Polchinski, J.: String Theory: Superstring Theory and Beyond, vol. 2. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  20. 20.
    Sunada, T.: Topology 28, 125–132 (1989) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Tanimura, S.: Prog. Theor. Phys. 90, 271–292 (1993) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Tanimura, S.: J. Math. Phys. 43, 5926–5948 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Tanimura, S.: J. Math. Phys. 44, 5042–5069 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford Mathematical Monographs. Oxford University Press, Oxford (1992) MATHGoogle Scholar
  25. 25.
    Wu, T.T., Yang, C.N.: Phys. Rev. D 12, 3845–3857 (1975) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Zak, J.: Phys. Rev. 134, 1602 (1964) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Zak, J.: Phys. Rev. 134, A1607 (1964) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Zak, J.: Phys. Rev. 139, A1159 (1965) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Zak, J.: Phys. Rev. B 39, A1607 (1989) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zak, J.: Phys. Rev. 168, 686–695 (1968) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Dip. di Matematica e ApplicazioniUniversità “Federico II”NapoliItaly
  2. 2.I.N.F.N.Sez. di Napoli, Complesso MSANapoliItaly

Personalised recommendations