Skip to main content
Log in

Time Accuracy for Superposition of Coherent States in Quantum Clock Synchronization

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The analysis of accuracy for arbitrary number N copies of identical prepared samples has been performed based on Bayesian framework. The time accuracies for even superposition of coherent states (SCSs) and odd SCSs could only achieve standard quantum limit for average photon number n (or α 2) is larger. The accuracies are also deduced from the approach of Cramér-Rao bound. It can be seen from the comparison that the accuracies derived from two methods in agreement with each other when n is large. The even SCSs could provide higher precision than classical coherent states in the interval 0.7≤n≤3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johannessen, S.: IEEE Control Syst. Mag. 24(2), 61–69 (2004)

    Article  Google Scholar 

  2. Lewandowski, W., Azoubib, J., Klepczynski, W.J.: Proc. IEEE 87(1), 163–172 (1999)

    Article  ADS  Google Scholar 

  3. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  4. Einstein, A.: Ann. Phys. 17, 891–921 (1905)

    Article  MATH  Google Scholar 

  5. Jozsa, R., Abrams, D.S., Dowling, J.D., Williams, C.P.: Phys. Rev. Lett. 85, 2010–2013 (2000)

    Article  ADS  Google Scholar 

  6. Chuang, I.L.: Phys. Rev. Lett. 85, 2006–2009 (2000)

    Article  ADS  Google Scholar 

  7. Yurtsever, U., Dowling, J.P.: Phys. Rev. A 65, 052317 (2002)

    Article  ADS  Google Scholar 

  8. Bahder, T.B., Golding, W.M.: Seventh International Conference on Quantum Communication, Measurement and Computing. AIP Conference Proceeding, vol. 734, pp. 395–398 (2004)

    Google Scholar 

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Phys. Rev. A 70, 043808 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L., Wong, F.N.C.: J. Opt. B, Quantum Semiclass. Opt. 4, 415–417 (2002)

    Article  ADS  Google Scholar 

  11. de Burgh, M., Bartlett, S.D.: Phys. Rev. A 72, 042301 (2005)

    Article  ADS  Google Scholar 

  12. Ben-Av, R., Exman, I.: Phys. Rev. A 84, 014301 (2011)

    Article  ADS  Google Scholar 

  13. Krco, M., Paul, P.: Phys. Rev. A 66, 024305 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  14. Valencia, A., Scarcelli, G., Shin, Y.: Appl. Phys. Lett. 85, 2655–2657 (2004)

    Article  ADS  Google Scholar 

  15. Ho, C., Lamas-Linares, A., Kurtsiefer, C.: New J. Phys. 11, 045011 (2009)

    Article  ADS  Google Scholar 

  16. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Giovannetti, V., Lloyd, S.: Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  18. Weinstein, J.D., Beloy, K., Derevianko, A.: Phys. Rev. A 81, 030302 (2010)

    Article  ADS  Google Scholar 

  19. Lee, C.-W., Jeong, H.: Phys. Rev. A 80, 052105 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Stobińska, M., Jeong, H., Ralph, T.C.: Phys. Rev. A 75, 052105 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  22. Jeong, H., Kim, M.S.: Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  23. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Science 312(5770), 83–86 (2006)

    Article  ADS  Google Scholar 

  24. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  26. Bagan, E., Monras, A., Muñoz-Tapia, R.: Phys. Rev. A 71, 062318 (2005)

    Article  ADS  Google Scholar 

  27. Holevo, A.S.: in Lect. Notes Maths, vol. 1055, 153 (1984)

    Google Scholar 

  28. Yuming, J., et al.: The Utility Table of Integrals. University of China Sci. & Technol. Press, Hefei (2006)

    Google Scholar 

  29. Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Boixo, S., Datta, A., et al.: Phys. Rev. A 80, 032103 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61075014), the Science Foundation of Xi’an University of Posts and Telecommunications for Young teachers (Grant No. ZL2010-11), and the Science Foundation of Shaanxi Provincial Department of Education (Grant No. 11JK0916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, D., Peng, Jy. & Zhao, J. Time Accuracy for Superposition of Coherent States in Quantum Clock Synchronization. Int J Theor Phys 51, 3627–3636 (2012). https://doi.org/10.1007/s10773-012-1249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1249-9

Keywords

Navigation