Skip to main content
Log in

Modified Homotopy Perturbation Method for Modeling Quantum Dots in the Quantum Clusters

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The homotopy perturbation method (HPM) has been applied for the solving nonlinear differential equations of quantum dots (QDs).

However, the HPM just gives the QDs behavior inside thick dielectric barriers as well as islands with deep quantum wells. In this paper, we apply a new approach which is based on modified homotopy perturbation method (MHPM) with self limiting model (SLM) to investigate the QDs behavior inside islands between clusters of sample surface. The MHPM and SLM are very effective, convenient and quite accurate to systems of partial differential equations and deal with nonlinearities distribution of the nonlinear differential equation. By using this method, we can find the exact solution of the QDs problem inside the islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35, 37 (2000)

    Article  ADS  MATH  Google Scholar 

  2. Beresford, R.: Analysis of the thin-oxide growth kinetic equation. Semicond. Sci. Technol. 18, 973 (2003)

    Article  ADS  Google Scholar 

  3. Krzeminski, C., Larrieu, G., Penaud, J., Lampin, E., Dubois, E.: Silicon dry oxidation kinetics at low temperature in the nanometric range: modeling and experiment. arXiv:1106.3160v1 (2011)

  4. Hariharan, G., Kannan, K., Sharma, K.R.: Haar wavelet in estimating depth profile of soil temperature. Appl. Math. Comput. 210, 119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equations by homotopy-perturbation method. Nonlinear Anal., Real World Appl. 10, 104115 (2009)

    Google Scholar 

  6. Mo, L.: Variational approach to reaction-diffusion process. Phys. Lett. A 368, 263265 (2009)

    Google Scholar 

  7. Ohkubo, J.: Variational principle of counting statistics in master equations. Phys. Rev. E 80, 012101 (2009)

    Article  ADS  Google Scholar 

  8. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345350 (2007)

    Article  Google Scholar 

  9. He, J.H.: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20, 2561 (2006)

    Article  ADS  Google Scholar 

  10. Abbasbandy, S.: Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. Appl. Math. Comput. 175, 581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Odibat, Z., Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36, 167 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Aslam, N., Sunol, A.K.: Homotopy continuation based prediction of azeotropy in binary and multicomponent mixtures through equations of state. Phys. Chem. Chem. Phys. 6, 2320 (2004)

    Article  Google Scholar 

  13. Dukkipati, R.V.: Vibrations: Problems Solving Companion. Dev Publishers & Distributors, New Delhi (2011)

    Google Scholar 

  14. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350, 87 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Wang, Y., Si, H., Mo, L.: Homotopy perturbation method for solving reaction-diffusion equations. Math. Probl. Eng. 20, 5838 (2008)

    Google Scholar 

  16. Momani, S., Yıldırım, A.: Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method. Int. J. Comput. Math. 87, 1057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jalaal, M., Ganji, D.D., Ahmadi, G.: Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Adv. Powder Technol. 21, 298 (2010)

    Article  Google Scholar 

  18. Morgen, P., Bahari, A., Pederson, K.: In: Functional Properties of Nanostructured Material, vol. 223, pp. 29–257. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Bahari, A., Robenhagen, U., Morgen, P.: Grown of ultra thin silicon nitride on Si(111) at low temperatures. Phys. Rev. B 72, 205323 (2005)

    Article  ADS  Google Scholar 

  20. Morgen, P., Bahari, A., Rao, M.G., Li, Z.S.: Roads to ultra thin silicon oxide. J. Vac. Sci. Technol., A, Vac. Surf. Films 23, 201 (2005)

    Article  ADS  Google Scholar 

  21. Bahari, A., Morgen, P., Li, Z.S., Pederson, K.: Growth of a stacked silicon nitride/silicon oxide dielectric on Si(100). J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 2119 (2006)

    Article  ADS  Google Scholar 

  22. Bahari, A., Morgen, P., Li, Z.S.: Ultra thin silicon nitride films on Si(100) studied with core level photoemission. Surf. Sci. 602, 2315 (2008)

    Article  ADS  Google Scholar 

  23. Bahari, A.: The stochastic resetting and master nonlinear Fokker—Plank in discrete spectroscopy of ultrathin silicon film. Int. J. Mod. Phys. B 26, 1250039 (2012)

    Article  ADS  Google Scholar 

  24. Riazian, M., Bahari, A.: Synthesis and nanostructural investigation of TiO2 nanorods doped by SiO2. Pramana 78(2), 319 (2012)

    Article  ADS  Google Scholar 

  25. Bahari, A., Noori, N.: Atomic force microscopy (AFM) and X-ray diffraction (XRD) studies of BiFeO3 nanoparticles with sol-gel method. J. Eng. Technol. Res. 3(4), 264 (2011)

    Google Scholar 

  26. Bahari, A., Gholipour, R., Khorshidi, Z., Mousavi, H.: The effect of zirconium incorporation in La2O3 nanocrystallites as gate dielectric in MOSFET. J. Basic Appl. Sci. Res. 2, 3470 (2012)

    Google Scholar 

  27. Bahari, A.: An alternative approach to the problem of CNT electron energy band structure. In: Electronic Properties of Carbon Nanotubes, pp. 409–423. InTech, Rijeka (2011)

    Google Scholar 

  28. Ganji, Z.Z., Ganji, D.D., Esmaeilpour, M.: Study on nonlinear Jeffery-Hamel flow by He’s semi-analytical methods and comparison with numerical results. Comput. Math. Appl. 58, 2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ganji, D.D., Hashemi, S.H.: Progress in Nonlinear Science. Asian Academic, Hong Kong (2011)

    Google Scholar 

  30. CASINO. http://www.gel.usherbrooke.ca/casino/download2.html

  31. Ganji, D.D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 7(4), 411 (2006)

    Article  Google Scholar 

  32. Matinfar, M., Ghanbari, M.: Homotopy perturbation method for the fisher’s equation and its generalized. Int. J. Nonlinear Sci. 8, 1057 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bahari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahari, A., Roodbari Shahmiri, M. & Mirnia, N. Modified Homotopy Perturbation Method for Modeling Quantum Dots in the Quantum Clusters. Int J Theor Phys 51, 3464–3470 (2012). https://doi.org/10.1007/s10773-012-1231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1231-6

Keywords

Navigation