Skip to main content
Log in

Octonion Quantum Chromodynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Starting with the usual definitions of octonions, an attempt has been made to establish the relations between octonion basis elements and Gell-Mann λ matrices of SU(3) symmetry on comparing the multiplication tables for Gell-Mann λ matrices of SU(3) symmetry and octonion basis elements. Consequently, the quantum chromo dynamics (QCD) has been reformulated and it is shown that the theory of strong interactions could be explained better in terms of non-associative octonion algebra. Further, the octonion automorphism group SU(3) has been suitably handled with split basis of octonion algebra showing that the SU(3) C gauge theory of colored quarks carries two real gauge fields which are responsible for the existence of two gauge potentials respectively associated with electric charge and magnetic monopole and supports well the idea that the colored quarks are dyons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickson, L.E.: On quaternions and their generalization and the history of the eight square theorem. Ann. Math. 20, 155 (1919)

    Article  MATH  Google Scholar 

  2. Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969)

    Google Scholar 

  3. Tait, P.G.: An Elementary Treatise on Quaternions. Oxford Univ. Press, Oxford (1875)

    Google Scholar 

  4. Cayley, A.: An Jacobi’s elliptic functions, in reply to the Rev. B. Bornwin; and on quaternion. Philos. Mag. 26, 208 (1845)

    Google Scholar 

  5. Graves, R.P.: Life of Sir William Rowan Hamilton, 3 vols. Arno Press, New York (1975)

    Google Scholar 

  6. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145 (2001)

    Article  MathSciNet  Google Scholar 

  7. Catto, S.: Exceptional projective geometries and internal symmetries. arXiv:hep-th/0302079

  8. Catto, S.: Symmetries in science: from the rotation group to quantum algebras 6, 129 (1993), Ed. B. Gruber, Plenum Press

  9. Foot, R., Joshi, G.C.: Space-time symmetries of superstring and Jordan algebras. Int. J. Theor. Phys. 28, 1449 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foot, R., Joshi, G.C.: String theories and the Jordan algebras. Phys. Lett. B 199, 203 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  11. Kugo, T., Townsend, P.: Supersymmetry and the division algebras. Nucl. Phys. B 221, 357 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Manogue, C.A., Sudbery, A.: General solutions of covariant superstring equations of motion. Phys. Rev. D 40, 4073 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  13. Schray, J.: Octonions and supersymmetry. Ph.D. thesis, Department of Physics, Oregon State University (1994) (unpublished)

  14. Abdel-Khalek Mostafa, K.S.: Ring division algebra, self duality and supersymmetry. arXiv:hep-th/0002155

  15. Morita, K.: Quaternionic variational formalism for Poincaré gauge theory and supergravity. Prog. Theor. Phys. 73, 999 (1985)

    Article  ADS  MATH  Google Scholar 

  16. Morita, K.: Gauge theories over quaternions and Weinberg-Salam theory. Prog. Theor. Phys. 65, 2071 (1981)

    Article  ADS  MATH  Google Scholar 

  17. Morita, K.: Quaternionic Weinberg-Salam theory. Prog. Theor. Phys. 67, 1860 (1982)

    Article  ADS  Google Scholar 

  18. Günaydin, M., Gürsey F.: Quark structure and octonions. J. Math. Phys. 14, 1651 (1973)

    Article  MATH  Google Scholar 

  19. Günaydin, M.: Octonionic Hilbert spaces, the Poincaré group and SU(3). J. Math. Phys. 17, 1875 (1976)

    Article  ADS  Google Scholar 

  20. Pushpa, Bisht, P.S., Li, T., Negi, O.P.S.: Quaternion octonion reformulation of quantum chromodynamics. Int. J. Theor. Phys. 50, 594 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  22. ’t Hooft, G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  23. Polyakov, A.M.: Particle spectrum in quantum field theory. JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  24. Schwinger, J.: Dyons versus quarks. Science 166, 690 (1969)

    Article  ADS  Google Scholar 

  25. Zwanzinger, D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968)

    Article  ADS  Google Scholar 

  26. Julia, B., Zee, A.: poles with both magnetic and electric charges in non-Abelian gauge theory. Phys. Rev. D 11, 2227 (1975)

    Article  ADS  Google Scholar 

  27. Negi, O.P.S., Dehnen, H.: Gauge formulation for two potential theory of dyons. Int. J. Theor. Phys. 50, 2446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized octonion electrodynamics. Int. J. Theor. Phys. 49, 1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized split-octonion electrodynamics. Int. J. Theor. Phys. 50, 1919 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bisht, P.S., Pandey, B., Negi, O.P.S.: Interpretations of octonion wave equations. Fizika B 17, 405 (2008)

    ADS  Google Scholar 

  31. Pushpa, Bisht, P.S., Negi, O.P.S.: Spontaneous symmetry breaking in presence of electric and magnetic charges. Int. J. Theor. Phys. 50, 1927 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Castro, C.: On the noncommutative and nonassociative geometry of octonionic space time, modified dispersion relations and grand unification. J. Math. Phys. 48, 073517 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. Marques, S., Oliveira, C.G.: An extension of quaternionic metrics to octonions. J. Math. Phys. 26, 3131 (1983)

    Article  ADS  Google Scholar 

  34. Dangwal, S., Bisht, P.S., Negi, O.P.S.: Octonionic gauge formulation for dyonic fields. arXiv:hep-th/0608061

Download references

Acknowledgements

One of us (O.P.S.N.) acknowledges the financial support from Third World Academy of Sciences, Trieste (Italy) and Chinese Academy of Sciences, Beijing under UNESCO-TWAS Associateship Scheme. He is also thankful to Prof. Yue-Liang Wu for his hospitality and research facilities at ITP and KITPC, Beijing (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. S. Negi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanyal, B.C., Bisht, P.S., Li, T. et al. Octonion Quantum Chromodynamics. Int J Theor Phys 51, 3410–3422 (2012). https://doi.org/10.1007/s10773-012-1222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1222-7

Keywords

Navigation