Skip to main content
Log in

The Role of Pressure During Shearing, Dissipative Collapse

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyse a new family of solutions to the Einstein field equations describing the collapse of a fluid sphere in the presence of heat flux and shear. These solutions ensure that the collapsing fluid is accelerating and provide a generalisation of the geodesic fluid models studied in earlier treatments. In particular, we demonstrate the role played by pressure in the dynamics of the collapse process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  2. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. D 56, 455 (1939)

    Article  ADS  MATH  Google Scholar 

  3. Santos, N.O.: Non-adiabatic radiating collapse. Mon. Not. R. Astron. Soc. 216, 403 (1985)

    ADS  Google Scholar 

  4. Banerjee, A., Chatterjee, S., Dadhich, N.: Spherical collapse with heat flow and without horizon. Mod. Phys. Lett. A 35, 2335 (2002)

    Article  ADS  Google Scholar 

  5. Naidu, N.F., Govender, M., Govinder, K.S.: Thermal evolution of a radiating anisotropic star with shear. Int. J. Mod. Phys. D 15, 1053 (2006)

    Article  ADS  MATH  Google Scholar 

  6. Govender, M., Thirukkanesh, S.: Dissipative collapse in the presence of Λ. Int. J. Theor. Phys. 48, 3558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rajah, S.S., Maharaj, S.D.: A Riccati equation in radiative stellar collapse. J. Math. Phys. 49, 012501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Herrera, L., Santos, N.O.: Collapsing spheres satisfying an “Euclidean condition”. Gen. Relativ. Gravit. 42, 2383 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Vaidya, P.C.: The gravitational field of a radiating star. Proc. Indian Acad. Sci., Sect. A, Phys. Sci. 33, 264 (1951)

    MathSciNet  ADS  MATH  Google Scholar 

  10. Govender, G., Govender, M., Govinder, K.S.: Thermal behaviour of Euclidean stars. Int. J. Mod. Phys. D 19, 1773 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Di Prisco, A., Herrera, L., Ospino, J., Santos, N.O., Viña-Cervantes, V.M.: Expansion-free cavity evolution: some exact analytical models. Int. J. Mod. Phys. D 20, 2351 (2011)

    Article  ADS  Google Scholar 

  12. Thirukkanesh, S., Rajah, S.S., Maharaj, S.D.: Shearing radiative collapse with expansion and acceleration. J. Math. Phys. 53, 032506 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  13. Fleming, D.: Dissipative gravitating systems. Unpublished MSc Thesis, UKZN, South Africa (2012)

  14. Govinder, K.S., Govender, M.: A general class of Euclidean stars. Gen. Relativ. Gravit. 44, 147 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Maartens, R.: Causal thermodynamics in relativity (1996). arXiv:astro-ph/9609119v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Govender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govender, M., Govinder, K.S. & Fleming, D. The Role of Pressure During Shearing, Dissipative Collapse. Int J Theor Phys 51, 3399–3409 (2012). https://doi.org/10.1007/s10773-012-1221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1221-8

Keywords

Navigation