A Class of Well Behaved Charged Analogues of Schwarzchild’s Interior Solution
- 131 Downloads
- 2 Citations
Abstract
A class of well behaved charged analogues of Schwarzchild’s interior solution has been obtained using a particular electric intensity. The solutions of this class are utilized to depict a superdense star model with surface density 2×1014 g cm−3. The solution obtained is new and the pressure (p), density (c 2 ρ), velocity of sound \((\sqrt{( dp / c^{2}d\rho )} )\) and (p/(c 2 ρ)) are monotonically decreasing towards the pressure free interface. Moreover the adiabatic constant is found to be more than (4/3) which is necessary for stability under radial perturbation. Also the electric intensity increases monotonically towards the surface. The well behaved model has the maximum mass M=1.740793M Θ , Radius 12.130308 km. The redshift at the center and on the surface is given by z 0=0.384261 and z a =0.292489. Out of the models of superdense star obtained couple of models represent Vela Pulsar for (i) α 2=1.03, b=0.33, \(\frac{a^{2}}{R^{2}} = 0.15\), Radius=10.8566 km, M=1.18331M Θ , I=0.642601×1045, (ii) α 2=1.1, b=0.3, \(\frac{a^{2}}{R^{2}} = 0.16\), Radius=11.197533 km, M=1.311438M Θ , I=0.774508×1045. All the solutions mentioned above are reducible to Schwarzchild interior solution in the absence of charge.
Keywords
Schwarzchild’s interior solution Charged fluids Superdense stars General relativity Neutron star (NS) Strange star (SS)References
- 1.Adler, R.J.: J. Math. Phys. 15, 729 (1974) ADSCrossRefGoogle Scholar
- 2.Alpar, M.A., Chau, H.F., Pines, D.: Astrophys. J. 409, 345 (1993) ADSCrossRefGoogle Scholar
- 3.Banerjee, A., Som, M.M.: Int. J. Theor. Phys. 20, 349 (1981) MathSciNetCrossRefGoogle Scholar
- 4.Bejger, M., Haensel, P.: Astron. Astrophys. 396, 917 (2002) ADSCrossRefGoogle Scholar
- 5.Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 6.Cataldo, M., Mitskievic, N.V.: Class. Quantum Gravity 9, 545 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 7.Chau, H.F., McCulloch, P.M., Nandkumar, R., Pines, D.: Astrophys. J. 413, L113 (1993) ADSCrossRefGoogle Scholar
- 8.Cohen, J.M., Cohen, M.D.: Nuovo Cimento 60, 241 (1969) CrossRefGoogle Scholar
- 9.Durgapal, M.C., Fuloria, R.S.: Gen. Relativ. Gravit. 17, 671 (1985) MathSciNetADSCrossRefGoogle Scholar
- 10.Durgapal, M.C.: J. Phys. A 15, 2637 (1982) MathSciNetADSCrossRefGoogle Scholar
- 11.Dionysiou, D.D.: Astrophys. Space Sci. 85, 331 (1982) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 12.Florides, P.S.: J. Phys. A, Math. Gen. 17, 1419 (1983) MathSciNetADSCrossRefGoogle Scholar
- 13.Gron, O.: Phys. Rev. D 31, 2139 (1985) MathSciNetADSCrossRefGoogle Scholar
- 14.Gupta, Y.K., Gupta, R.S.: Acta Phys. Pol. B 17, 855 (1986) Google Scholar
- 15.Gupta, Y.K., Kumar, M.: Gen. Relativ. Gravit. 37(1), 575 (2005) ADSzbMATHCrossRefGoogle Scholar
- 16.Gupta, Y.K., Kumar, M.: Astrophys. Space Sci. 299(1), 43–P 59 (2005) ADSzbMATHCrossRefGoogle Scholar
- 17.Gupta, Y.K., Kumar, M.: Gen. Relativ. Gravit. 37(1), 233 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 18.Gupta, Y.K., Maurya, S.K.: Astrophys. Space Sci. (2010). doi: 1007/s10509-010-0445-4 Google Scholar
- 19.Gupta, Y.K., Maurya, S.K.: Astrophys. Space Sci. (2010). doi: 1007/s10509-010-0503-y Google Scholar
- 20.Ivanov, B.V.: Phys. Rev. D 65, 104001 (2002) MathSciNetADSCrossRefGoogle Scholar
- 21.Klein, O.: Ark. Mat. Astron. Fys. 34, N19 (1947) Google Scholar
- 22.Kuchowicz, B.: Acta Phys. Pol. 33, 541 (1968) Google Scholar
- 23.Maharaj, S.D., Komathiraj, K.: Gen. Relativ. Gravit. 39, 2079–2093 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 24.Maharaj, S.D., Komathiraj, K.: J. Math. Phys. 48, 042501 (2007) MathSciNetADSCrossRefGoogle Scholar
- 25.Maharaj, S.D., Thirukkanesh, S.: Class. Quantum Gravity 23, 2697–2709 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Maharaj, S.D., Thirukkanesh, S.: Math. Methods Appl. Sci. 29, 1943–1959 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 27.Maharaj, S.D., Hansraj, S.: Int. J. Mod. Phys. D 15, 1311–1327 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 28.Maharaj, S.D., Komathiraj, K.: arXiv:0808.1998v1 [gr-qc] (2008)
- 29.Maharaj, S.D., Thirukkanesh, S.: arXiv:0904.0781v1 [gr-qc] (2009)
- 30.Toleman, R.C.: Phys. Rev. 55, 364 (1939) ADSCrossRefGoogle Scholar
- 31.Mukherjee, S., Paul, B.C., Dadhich, N.K.: Class. Quantum Gravity 14, 3475 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 32.Nduka, A.: Acta. Phys. Pol. B 75 (1977) Google Scholar
- 33.Nduka, A.: Gen. Relativ. Gravit. 7, 493 (1976) ADSCrossRefGoogle Scholar
- 34.Negi, P.S.: Astrophys. Space Sci. 332, 145 (2011) ADSCrossRefGoogle Scholar
- 35.Pant, D.N., Sah, A.: J. Math. Phys. 20, 2537 (1979) ADSCrossRefGoogle Scholar
- 36.Pant, N., et al.: Astrophys. Space Sci. (2010). doi: 10.1007/s10509-010-0383-1 Google Scholar
- 37.Sharma, R., Mukherjee, S., Maharaj, S.D.: Gen. Relativ. Gravit. 33, 999 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 38.Singh, T., Yadav, R.B.S.: Acta Phys. Pol. B 9, 475 (1978) Google Scholar
- 39.Tikekar, R.: J. Math. Phys. 25, 1481 (1984) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 40.Vaidya, P.C., Tikekar, R.: Astron. Astrophys. 3, 325 (1982) CrossRefGoogle Scholar
- 41.Wyman, M.: Phys. Rev. 75, 1930 (1949) MathSciNetADSzbMATHCrossRefGoogle Scholar
- 42.Bijalwan, N., Gupta, Y.K.: Astrophys. Space. Sci. 317, 251–260 (2008). doi: 10.1007/s10509-00809887-3 ADSzbMATHCrossRefGoogle Scholar
- 43.Guilfoyle, B.S.: Gen. Relativ. Gravit. 31, 1645 (1999) MathSciNetADSCrossRefGoogle Scholar