Skip to main content
Log in

Quaternion Octonion Reformulation of Grand Unified Theories

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, Grand Unified theories are discussed in terms of quaternions and octonions by using the relation between quaternion basis elements with Pauli matrices and Octonions with Gell Mann λ matrices. Connection between the unitary groups of GUTs and the normed division algebra has been established to re-describe the SU(5) gauge group. We have thus described the SU(5) gauge group and its subgroup SU(3) C ×SU(2) L ×U(1) by using quaternion and octonion basis elements. As such the connection between U(1) gauge group and complex number, SU(2) gauge group and quaternions and SU(3) and octonions is established. It is concluded that the division algebra approach to the theory of unification of fundamental interactions as the case of GUTs leads to the consequences towards the new understanding of these theories which incorporate the existence of magnetic monopole and dyon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgi, H., Glashow, S.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  2. Graham, G.R.: Grand Unified Theories. Benjamin-Cummings, Redwood City (1985)

    Google Scholar 

  3. Mohapatra, R.N.: Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics. Springer, Berlin (1992)

    Google Scholar 

  4. Witten, E.: Grand unification with and without supersymmetry. In: Castanos, O., Frank, A., Urrutia, L. (eds.) Introduction to Supersymmetry in Particle and Nuclear Physics, pp. 53–76. Plenum, New York (1984)

    Google Scholar 

  5. Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Am. Math. Soc. 47, 483 (2010). Eprint arXiv:0904.1556 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  6. Pati, J., Salam, A.: Lepton number as the fourth color. Phys. Rev. D 10, 275 (1974)

    Article  ADS  Google Scholar 

  7. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145 (2001)

    Article  MathSciNet  Google Scholar 

  8. Pushpa, Bisht, P.S., Li, T., Negi, O.P.S.: Quaternion octonion reformulation of quantum chromodynamics. Int. J. Theor. Phys. 50, 594 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  10. ’t Hooft, G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276 (1974)

    Article  ADS  Google Scholar 

  11. Polyakov, A.M.: Particle spectrum in quantum field theory. JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  12. Schwinger, J.: Dyons versus quarks. Science 166, 690 (1969)

    Article  ADS  Google Scholar 

  13. Zwanzinger, D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968)

    Article  ADS  Google Scholar 

  14. Julia, B., Zee, A.: Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys. Rev. D 11, 2227 (1975)

    Article  ADS  Google Scholar 

  15. Morita, K.: Octonions, quarks and QCD. Prog. Theor. Phys. 65, 787 (1981)

    Article  ADS  Google Scholar 

  16. Morita, K.: An algebraic explanation for the family structure of quarks and leptons. Prog. Theor. Phys. 66, 1519 (1981)

    Article  ADS  MATH  Google Scholar 

  17. Günaydin, M., Gürsey, F.: Quark structure and octonions. J. Math. Phys. 14, 1651 (1973)

    Article  MATH  Google Scholar 

  18. Dixon, G.M.: Division Algebras: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics. Springer, Berlin (1994)

    MATH  Google Scholar 

  19. Buras, A.J., Ellis, J.R., Gaillard, M.K., Nanopoulos, D.V.: Aspects of the grand unification of strong, weak and electromagnetic interactions. Nucl. Phys. B 135, 66 (1978)

    Article  ADS  Google Scholar 

  20. Müller, G.: Gauge Theory of Weak Interactions, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  21. Kaku, M.: Quantum Field Theory. Oxford University Press, London (1994)

    Google Scholar 

  22. Ross, G.: Grand Unified Theories. Westview Press, Boulder (1984). ISBN 978-0-805-36968-7

    Google Scholar 

  23. Georgi, H.: Unified gauge theories. In: Proceedings, Theories and Experiments in High Energy Physics, New York, p. 329 (1975)

    Chapter  Google Scholar 

  24. Kühne, R.W.: A model of magnetic monopoles. Mod. Phys. Lett. A 12, 40 (1997)

    Google Scholar 

Download references

Acknowledgements

Two of us (P.S.B. & O.P.S.N.) are thankful to UNESCO and Third World Academy of Sciences, Trieste (Italy) for providing them UNESCO-TWAS Associateship. The hospitality and research facilities provided by Professor Yue-Liang Wu, Director ITP, in Institute of Theoretical Physics and Kavli Institute of Theoretical Physics at Chinese Academy of Sciences, Beijing (China) under the frame work of TWAS Associate Membership Scheme are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. S. Negi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushpa, Bisht, P.S., Li, T. et al. Quaternion Octonion Reformulation of Grand Unified Theories. Int J Theor Phys 51, 3228–3235 (2012). https://doi.org/10.1007/s10773-012-1204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1204-9

Keywords

Navigation