Skip to main content
Log in

Dark Matter Density from Heavy Neutrino Decays

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

As we know the heavy neutrino decays is a successful model for describing dark matter and also is origin of the universe entropy. In this paper we use heavy neutrino decays to calculate time-dependent dark matter density. In that case we use observational data to fixing our solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OPERA Collaboration: Measurement of the neutrino velocity with the OPERA detector in the CNGS beam (2011). arXiv:1109.4897v2 [hep-ex]

  2. Fukuda, Y., et al. (Super-Kamiokande Collaboration): Phys. Rev. Lett. 82, 1810 (1999)

    Article  ADS  Google Scholar 

  3. Fukuda, Y., et al. (Super-Kamiokande Collaboration): Phys. Rev. Lett. 82, 2430 (1999)

    Article  ADS  Google Scholar 

  4. Fukuda, Y., et al. (Super-Kamiokande Collaboration): Phys. Rev. Lett. 82, 2644 (1999)

    Article  ADS  Google Scholar 

  5. Fukuda, Y., et al. (Super-Kamiokande Collaboration): Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  6. Cleveland, B.T., et al.: Astrophys. J. 496, 505 (1998)

    Article  ADS  Google Scholar 

  7. Cattadori, C., Ferrari, N., Pandola, L.: Nucl. Phys. B, Proc. Suppl. 143, 3 (2005)

    Article  ADS  Google Scholar 

  8. Eguchi, K., et al. (KamLand Collaboration): Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  9. Araki, T., et al. (KamLand Collaboration): Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  Google Scholar 

  10. Aliu, E., et al. (K2K Collaboration): Phys. Rev. Lett. 94, 081802 (2005)

    Article  ADS  Google Scholar 

  11. Chaturvedi, K., Koranga, B.S., Kumar, V.: Analytic calculation of neutrino mass eigenvalues. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-011-0942-4

    Google Scholar 

  12. Singh Koranga, B., Kumar, V., Jha, A.: CPT violating neutrino oscillation under Planck scale effects. Int. J. Theor. Phys. 50, 2609–2613 (2011)

    Article  MATH  Google Scholar 

  13. Koranga, B.S., Narayan, M.: Effect of majorana phases in neutrino oscillation. Int. J. Theor. Phys. 50, 1831–1836 (2011)

    Article  Google Scholar 

  14. Piriz, D.D., Roy, M., Wudka, J.: Neutrino oscillations in strong gravitational fields. Phys. Rev. D 54, 1587 (1996)

    Article  ADS  Google Scholar 

  15. Cardall, C.Y., Fuller, G.M.: Neutrino oscillations in curved spacetime: a heuristic treatment. Phys. Rev. D 55, 7960 (1997)

    Article  ADS  Google Scholar 

  16. Zhang, C.M., Beesham, A.: On the mass neutrino phase along the geodesic line and the null line in curved and flat spacetime. Int. J. Mod. Phys. D 12, 727 (2003)

    Article  ADS  Google Scholar 

  17. Huang, X.J., Wang, Y.J.: Interference phase of mass neutrinos in Kerr spacetime. Commun. Theor. Phys. 40, 742 (2003)

    Google Scholar 

  18. Huang, X.J., Wang, Y.J.: Mass neutrino oscillations in Robertson-Walker spacetime. Chin. Phys. 15, 229 (2006)

    Article  ADS  Google Scholar 

  19. Ren, J., Liu, H.: Neutrino oscillations in the Robertson-Walker metric and the cosmological blue shift of the oscillation length. Int. J. Theor. Phys. 49, 2805–2814 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ren, J., Pan, Y.Y.: Neutrino oscillations in the de sitter and the Anti-de Sitter space-time. Int. J. Theor. Phys. 50, 2614–2621 (2011)

    Article  MATH  Google Scholar 

  21. Ren, J., Pan, Y.Y.: Using Hamilton-Jacobi equation to study the neutrino oscillations in the stationary space-time. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-011-0988-3

    Google Scholar 

  22. Saadat, H., et al.: R-charged black hole and neutrino oscillation. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1167-x

    MathSciNet  Google Scholar 

  23. Sadeghi, J., Saadat, H., Pourhassan, B.: Relation between dark matter density and temperature with power law. Chaos Solitons Fractals 42, 1080 (2009)

    Article  ADS  Google Scholar 

  24. Saadat, H.: Solar system and dark matter. Chaos Solitons Fractals 42, 2236 (2009)

    Article  ADS  Google Scholar 

  25. Saadat, H., et al.: The effect of dark matter on solar system and perihelion precession of earth planet. Int. J. Theor. Phys. 49(10), 2506 (2010)

    Article  MATH  Google Scholar 

  26. Saadat, H.: Relation between the dark energy density and temperature. Int. J. Theor. Phys. 50(1), 140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saadat, H., Saadat, A.M.: Time-dependent dark energy density and holographic DE model with interaction. Int. J. Theor. Phys. 50, 1358–1366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saadat, H.: Holographic dark energy density. Int. J. Theor. Phys. 50, 1769–1775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saadat, H., et al.: Holographic dark energy density and JBP parametrization. Int. J. Theor. Phys. 50, 2878 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saadat, H.: Hubble expansion parameter in a new model of dark energy. Int. J. Theor. Phys. 51, 78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saadat, H.: Holographic Ricci dark energy model. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-011-0952-2

    MathSciNet  Google Scholar 

  32. Saadat, H.: Holographic dark energy model with interaction and cosmological constant in the flat space-time. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-011-1070-x

    MathSciNet  Google Scholar 

  33. Koranga, B.S., Pandey, R.: Three flavor neutrino mixing and dark energy above GUT scale. Int. J. Theor. Phys. 50, 1468 (2011)

    Article  MATH  Google Scholar 

  34. Nakamura, K., et al. (Particle Data Group): Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  35. Buchmuller, W., Schmitz, K., Vertongen, G.: Matter and dark matter from false vacuum decay. Phys. Lett. B 693, 421–425 (2010)

    Article  ADS  Google Scholar 

  36. Lee, H.-S., Liu, Z., Soni, A.: Neutrino dark matter candidate in fourth generation scenarios. Phys. Lett. B 704, 30–35 (2011)

    Article  ADS  Google Scholar 

  37. Zhou, Y.-F.: Probing the fourth generation Majorana neutrino dark matter (2011). arXiv:1110.2930v1 [hep-ph]

  38. Buchmuller, W., Schmitz, K., Vertongen, G.: Entropy, Baryon asymmetry and dark matter from heavy neutrino decays. Nucl. Phys. B 851, 481–532 (2011)

    Article  ADS  Google Scholar 

  39. Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  40. Capozziello, S., Cardone, V.F., Farajollahi, H., Ravanpak, A.: Cosmography in f(T)-gravity. Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  41. Khriplovich, I.B., Pitjeva, E.V.: Upper limits on density of dark matter in solar system. Int. J. Mod. Phys. D 15, 615 (2006)

    Article  ADS  MATH  Google Scholar 

  42. Xu, L., Wang, Y.: Cosmography: Supernovae Union2, Baryon acoustic oscillation, observational Hubble data and Gamma ray bursts. Phys. Lett. B 702, 114–120 (2011)

    Article  ADS  Google Scholar 

  43. Vitagliano, V., Xia, J.-Q., Liberati, S., Viel, M.: High-Redshift cosmography. J. Cosmol. Astropart. Phys. 2010(03), 005 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Saadat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadat, H., Rostampour, M. Dark Matter Density from Heavy Neutrino Decays. Int J Theor Phys 51, 3021–3026 (2012). https://doi.org/10.1007/s10773-012-1184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1184-9

Keywords

Navigation