Skip to main content
Log in

On the Fractional Hamilton and Lagrange Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript


The fractional generalization of Hamiltonian mechanics is constructed by using the Lagrangian involving fractional derivatives. In this paper the equation of projectile motion with air friction using fractional Hamiltonian mechanics and equation for current loop involving electric source, a resistor, an inductor and a capacitor has been obtained. Furthermore, fractional optics has been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993)

    Google Scholar 

  3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, New York (1993)

    MATH  Google Scholar 

  4. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  7. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006)

    Google Scholar 

  8. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012)

    Google Scholar 

  9. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  10. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  11. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, 119–121 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Muslih, S., D, B.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A, Math. Gen. 39, 10375–10384 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Tarasov, V.E.: Fractional variation for dynamical systems: Hamilton and Lagrange approaches. J. Phys. 39(26), 8409–8425 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  16. Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klimek, K.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  ADS  Google Scholar 

  19. Naber, M.: Time fractional Schrodinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)

    Article  ADS  MATH  Google Scholar 

  21. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Tarawneh, K.M., Rabei, E.M., Ghassib, H.B.: Lagrangian and Hamiltonian formulations of the damped harmonic oscillator using Caputo fractional derivative. J. Dyn. Syst. Geom. Theories 8(1), 59–70 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  24. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003)

    Book  Google Scholar 

  25. Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D., Baleanu, M.C.: Fractional odd-dimensional mechanics. Adv. Differ. Equ. 2011, 526472 (2011)

    MathSciNet  Google Scholar 

  26. Baleanu, D., Alireza, K., Golmankhaneh, A.K., Golmankhaneh, A.L., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. 60, 81–86 (2010)

    Article  MATH  Google Scholar 

  27. Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R.R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8, 120–125 (2010)

    Article  Google Scholar 

  28. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golmankhaneh, A.K., Yengejeh, A.M. & Baleanu, D. On the Fractional Hamilton and Lagrange Mechanics. Int J Theor Phys 51, 2909–2916 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: