International Journal of Theoretical Physics

, Volume 51, Issue 8, pp 2514–2523 | Cite as

A Modified Quantum Key Distribution Without Public Announcement Bases Against Photon-Number-Splitting Attack

Article

Abstract

The security of quantum cryptography without public announcement bases in photon-number-splitting attack is discussed. Based on unambiguous state discrimination, we propose two attack strategies and shown that partial information about the raw key may be eavesdropped by these attacks. Though this flaw can be overcame by performing classical privacy amplification, it will decrease the efficiency of the protocol greatly. Hence, drawing ideas from cipher block chaining, we put forward a possible modified protocol, which is secure against the presented attacks at zero error.

Keywords

Quantum key distribution Photon-number-splitting attack Unambiguous state discrimination Cipher block chaining 

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984) Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent state. Phys. Rev. A 51, 1863 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    Guo, G.C., Shi, B.S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256, 109 (1999) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Cabello, A.: Phys. Rev. Lett. 85, 5635 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H., Zuo, X.W.: Novel quantum deterministic key distribution protocols with entangled states. Int. J. Theor. Phys. 49, 2035 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kang, G.D., Fang, M.F., Xiao, X., Li, Y.L.: One-way protocol for two-bit intrinsic random key distribution with entangled photon pairs. Int. J. Theor. Phys. 50, 663 (2011) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 244, 489 (1998) ADSMATHCrossRefGoogle Scholar
  13. 13.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf Nicolas, J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 40–47 (2005) MathSciNetMATHGoogle Scholar
  16. 16.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001) [Phys. Rev. A 61, 052312 (2000)] MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007) MathSciNetMATHGoogle Scholar
  19. 19.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Ser. G 53, 491 (2010) CrossRefGoogle Scholar
  21. 21.
    Wójcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Liu, W.T., Sun, S.H., Liang, L.M., Yuan, J.M.: Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution. Phys. Rev. A 83, 042326 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    Hwang, W.Y.: Quantum Key Distribution with High Loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    Yin, Z.Q., Han, Z.F., Sun, F.W., Guo, G.C.: Decoy state quantum key distribution with modified coherent state. Phys. Rev. A 76, 014304 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    Acin, A., Gisin, N., Scarani, V.: Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Phys. Rev. A 69, 012309 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    Koashi, M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    Wu, G., Chen, J., Li, Y., Xu, L., Zeng, H.: Preventing eavesdropping with bright reference pulses for a practical quantum key distribution. Phys. Rev. A 74, 062323 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    Kye, W.H., Kim, C.M., Kim, M.S., Park, Y.J.: Quantum key distribution with blind polarization bases. Phys. Rev. Lett. 95, 040501 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    Inoue, K., Honjo, T.: Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack. Phys. Rev. A 71, 042305 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    Mauerer, W., Silberhorn, C.: Quantum key distribution with passive decoy state selection. Phys. Rev. A 75, 050305(R) (2007) ADSCrossRefGoogle Scholar
  41. 41.
    Yin, Z.Q., Zhao, Y.B., Zhou, Z.W., Han, Z.F., Guo, G.C.: Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 77, 062326 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    Hwang, W.Y., Ahn, D., Hwang, S.W.: Eavesdropper’s optimal information in variations of Bennett–Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279, 133 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  43. 43.
    Hwang, W.Y., Wang, X.B., Matsumoto, K., Kim, J., Lee, H.W.: Shor-Preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67, 012302 (2003) ADSCrossRefGoogle Scholar
  44. 44.
    Wen, K., Long, G.L.: Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys. Rev. A 72, 022336 (2005) ADSCrossRefGoogle Scholar
  45. 45.
    Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Pang, S.S., Wu, S.J.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    Zhang, S.Y., Ying, M.S.: Set discrimination of quantum states. Phys. Rev. A 65, 062322 (2002) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Sun, Y.Q., Bergou, J.A., Hillery, M.: Optimum unambiguous discrimination between subsets of nonorthogonal quantum states. Phys. Rev. A 66, 032315 (2002) ADSCrossRefGoogle Scholar
  49. 49.
    Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301(R) (2003) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Schneier, B.: Applied Cryptography-Protocols, Algorithms, and Source Code in C, 2nd edn., pp. 193–197. Wiley, New York (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceFujian Normal UniversityFuzhouChina
  2. 2.Key Lab of Network Security and CryptographyFujian Normal UniversityFuzhouChina

Personalised recommendations