Skip to main content
Log in

A Cosmological Model with Static Extra Dimensions and Varying Cosmological Constant

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A five dimensional cosmological model with FLRW type Kaluza-Klien metric has been investigated with static extra dimensions and varying cosmological constant. The field equations with static extra dimension are solved by considering the cosmological constant as a function of time for different cases. The effective pressure is considered as the difference of pressure corresponding to the extra dimension and the usual four dimensions. The conditions for acceleration of the universe are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, P.C.W.: Astrophys. Space Sci. 244, 219 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  2. Wright, K.: Very dark energy, In: Discover, vol. 22, p. 3 (2001)

    Google Scholar 

  3. Straumann, N.: General Relativity with Applications to Astrophysics. Springer, Berlin (2004)

    MATH  Google Scholar 

  4. Zeldovich, Ya.B.: Sov. Phys. Usp. 11, 381 (1968)

    Article  ADS  Google Scholar 

  5. Burbidge, G.: Astgrophys. J. 154, L41 (1968)

    Article  ADS  Google Scholar 

  6. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Fujii, Y., Sato, K., Suginahara, T., Sujiyama, N. (eds.): Cosmological constant and the evolution of the universe. Academic Press, San Diego (1996)

    Google Scholar 

  8. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  9. Kilinc, C.B.: Astrophys. Space Sci. 289, 103 (2004)

    Article  ADS  MATH  Google Scholar 

  10. Krauss, L.M.: The state of the universe: cosmological parameters 2002. arXiv:astro-ph/0301012 (2003)

  11. Islam, J.N.: An Introduction to Mathematical Cosmology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Kenmaku, Otsuki, M.K., Sakai, R.: Gravitational force by point particle in static Einstein universe. arXiv:gr-qc/9405017 (1994)

  13. Carmeli, M.: Accelerating universe: theory verses experiment. arXiv:astro-ph/0205395 (2002)

  14. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  15. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  16. Padmanabhan, T.: Phys. Rep. 380, 235–320. arXiv:hep-th/0212290

  17. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ng, Y.: Int. J. Mod. Phys. D 1, 145 (1992)

    Article  ADS  MATH  Google Scholar 

  19. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  20. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Berman, M.S.: Phys. Rev. D 43, 1075 (1991)

    Article  ADS  Google Scholar 

  22. Nandan, H., Roder, N.M.B., Dehnen, H.: Class. Quantum Gravity 27, 245003 (2010)

    Article  ADS  Google Scholar 

  23. Roder, N.M.B., Nandan, H., Dehnen, H.: J. High Energy Phys. 10, 113 (2010)

    Article  ADS  Google Scholar 

  24. Roder, N.M.B., Nandan, H., Dehnen, H.: Int. J. Theor. Phys. 46, 2429 (2007)

    Article  MATH  Google Scholar 

  25. Roder, N.M.B., Nandan, H.: Indian J. Phys. 82, 69 (2008). hep-ph/0603168

    Google Scholar 

  26. Bezares-Roder, Nils M., Nandan, H., Goswami, U.D.: Primeval acceleration and bounce conditions within induced gravity. arXiv:gr-qc1101.4490

  27. Bertolami, O.: Nuovo Cimento B 93, 36 (1986)

    Article  ADS  Google Scholar 

  28. Ozer, M., Taha, M.O.: Phys. Lett. B 171, 363 (1986)

    Article  ADS  Google Scholar 

  29. Freese, K., Adams, F.C., Friemann, J.A., Mottola, E.: Nucl. Phys. B 287, 797 (1987)

    Article  ADS  Google Scholar 

  30. Bronstein, M.P.: Phys. Z. Sowjetunion 3, 73 (1993)

    Google Scholar 

  31. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998)

    Article  ADS  Google Scholar 

  32. Viana, P.T.P., Liddle, A.R.: Phys. Rev. D 57, 664 (1998)

    Article  ADS  Google Scholar 

  33. Caldwell, R., Dave, R.R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  34. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006). hep-th/0603057

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Sami, M.: arXiv:0904.3445 [hep-th]

  36. Carneiro, S., Pigozzo, C., Borges, H.A., Alcaniz, J.S.: Phys. Rev. D 74, 023532 (2006)

    Article  ADS  Google Scholar 

  37. Silveira, V., Waga, I.: Phys. Rev. D 50, 4890 (1994)

    Article  ADS  Google Scholar 

  38. Diaz-Rivera, L.M., Pimentel, I.O.: Phys. Rev. D 60, 123501 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  39. Amani, A.R., Pourhassan, B.: Int. J. Theor. Phys. doi:10.1007/s10773.011-0876-x (2011)

  40. Linde, A.D.: JETP Lett. 19, 183 (1974)

    MathSciNet  ADS  Google Scholar 

  41. Gasperini, M.: Phys. Lett. B 194, 347 (1987)

    Article  ADS  Google Scholar 

  42. Gasperini, M.: Class. Quantum Gravity 5, 521 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  43. Birkel, M., Sarkar, S.: Astropart. Phys. 6, 197 (1997)

    Article  ADS  Google Scholar 

  44. Pradhan, A., Srivastava, K., Ahuja, A.L.: Fizika B 16, 141–158 (2007). arXiv:gr-qc/0408057

    ADS  Google Scholar 

  45. Pradhan, A., Khadekar, G.S., Patki, V., Otarod, S.: Int. J. Theor. Phys. 47, 1751–1763 (2008)

    Article  Google Scholar 

  46. Debnath, P.S., Paul, B.C.: Int. J. Mod. Phys. D 15, 189–198 (2006). arXiv:gr-qc/0508031

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Aldrovandi, R., Beltran, A., Pereira, J.G.: arXiv:gr-qc/0312017 (2003)

  48. Marciano, W.J.: Phys. Rev. Lett. 52, 489 (1984)

    Article  ADS  Google Scholar 

  49. Freese, K., Kinny, W.H.: Phys. Lett. B 558, 1 (2003)

    Article  ADS  Google Scholar 

  50. Arbab, I.: Class. Quantum Gravity 20, 93 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Carneiro, S., Pigozzo, C., Borges, H.A., Alcaniz, J.S.: Phys. Rev. D, Part. Fields 74, 023532 (2006). arXiv:astro-ph/0605607

    Article  ADS  Google Scholar 

  52. Chaterjee, S.: A simple accelerating model of the universe in higher dimensional spacetime. In: 22nd Texas Symposium on Relativativistic Astrophysics at Stanford University, Dec. 13–17 (2004)

    Google Scholar 

  53. Khadekar, G.S., Pradhan, A., Molaei, M.R.: Int. J. Mod. Phys. D 15, 95–106 (2006)

    Article  ADS  MATH  Google Scholar 

  54. Purohit, K.D., Bhatt, Y.: Int. J. Mod. Phys. 23, 909 (2008)

    Article  ADS  MATH  Google Scholar 

  55. Purohit, K.D., Bhatt, Y.: Int. J. Theor. Phys. 50, 1417–1423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Randjber-Daemi, S., Salam, A., Strathdee, J.: Phys. Lett. B 135, 388 (1984)

    Article  ADS  Google Scholar 

  57. Wesson, P.S.: Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific, Singapore (2000)

    Google Scholar 

  58. Pradhan, A., Khadakar, G.S., Patki, V., Otarod, S.: arXiv:gr-qc/0508089

  59. Ren, J., Meng, X.-H., Zhao, L.: Phys. Rev. D 76, 043521 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the referees for the valuable suggestions and the directions for extending this work in future.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Purohit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purohit, K.D., Bhatt, Y. A Cosmological Model with Static Extra Dimensions and Varying Cosmological Constant. Int J Theor Phys 51, 1329–1337 (2012). https://doi.org/10.1007/s10773-011-1009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1009-2

Keywords

Navigation