Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 2, pp 612–621 | Cite as

Cosmological Models with Linearly Varying Deceleration Parameter

  • Özgür Akarsu
  • Tekin Dereli
Article

Abstract

We propose a new law for the deceleration parameter that varies linearly with time and covers Berman’s law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.

Keywords

Cosmological solutions Variable deceleration parameter Accelerating universe Dark energy Big rip 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cunha, J.V., Lima, J.A.S.: Transition redshift: new kinematic constraints from supernovae. Mon. Not. R. Astron. Soc. 390, 210–217 (2008) CrossRefADSGoogle Scholar
  2. 2.
    Cunha, J.V.: Kinematic constraints to the transition Redshift from SNe Ia union data. Phys. Rev. D, Part. Fields 79, 047301 (2009) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Li, Z., Wu, P., Yu, H.: Examining the cosmic acceleration with the latest Union2 supernova data. Phys. Lett. B 695, 1–8 (2011) CrossRefADSGoogle Scholar
  4. 4.
    Berman, M.S.: A special law of variation for Hubble’s parameter. Nuovo Cimento B 74, 182–186 (1983) CrossRefADSGoogle Scholar
  5. 5.
    Berman, M.S., Gomide, F.M.: Cosmological models with constant deceleration parameter. Gen. Relativ. Gravit. 20, 191–198 (1988) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than −1? Phys. Rev. D, Part. Fields 68, 023509 (2003) CrossRefADSGoogle Scholar
  7. 7.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006) CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    Zhao, G.B., et al.: Probing for dynamics of dark energy and curvature of universe with latest cosmological observations. Phys. Lett. B 648, 8–13 (2007) CrossRefADSGoogle Scholar
  9. 9.
    Frieman, J., Turner, M., Huterer, D.: Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 46, 385–432 (2008) CrossRefADSGoogle Scholar
  10. 10.
    Cai, Y.F., Saridakis, E.N., Setare, M.R., Xia, J.Q.: Quintom cosmology: theoretical implications and observations. Phys. Rep. 493, 1–60 (2010) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w<−1 causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Nesseris, S., Perivolaropoulos, L.: Crossing the phantom divide: theoretical implications and observational status. J. Cosmol. Astropart. Phys. 0701, 018 (2007) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Riess, A.G., et al.: Type Ia supernova discoveries at z>1 from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004) CrossRefADSGoogle Scholar
  14. 14.
    Astier, P., et al.: The supernova legacy survey: measurement of ΩMΛ and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Komatsu, E., et al.: Seven-year WMAP observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011) CrossRefADSGoogle Scholar
  16. 16.
    Eisenstein, G., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS Luminous Red Galaxies. Astrophys. J. 633, 560–574 (2005) CrossRefADSGoogle Scholar
  17. 17.
    Melchiorri, A., Pagano, L., Pandolfi, S.: When did cosmic acceleration start? Phys. Rev. D, Part. Fields 76, 041301 (2007) CrossRefADSGoogle Scholar
  18. 18.
    Ishida, E.E.O., Reis, R.R.R., Toribio, A.V., Waga, I.: When did cosmic acceleration start? How fast was the transition? Astropart. Phys. 28, 547–552 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Pandolfi, S.: When did cosmic acceleration start? Nucl. Phys. B 194, 294–299 (2009) CrossRefGoogle Scholar
  20. 20.
    Lima, J.A.S., Holanda, R.F.L., Cunha, J.V.: Are galaxy clusters suggesting an accelerating universe? AIP Conf. Proc. 1241, 224–229 (2010) CrossRefADSGoogle Scholar
  21. 21.
    Akarsu, Ö., Kılınç, C.B.: LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. Gen. Relativ. Gravit. 42, 119–140 (2010) CrossRefzbMATHADSGoogle Scholar
  22. 22.
    Kumar, S., Singh, C.P.: Anisotropic dark energy models with constant deceleration parameter. Gen. Relativ. Gravit. 43, 1427–1442 (2011) CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsKoç UniversityİstanbulTurkey

Personalised recommendations