Skip to main content
Log in

Quantum-Like Representation Algorithm for Trichotomous Observables

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the problem of representing statistical data (of any origin) by a complex probability amplitude. This paper is devoted to representation of data collected from measurements of two trichotomous observables. The complexity of the problem eventually increases compared to the case of dichotomous observables. We see that only special statistical data (satisfying a number of nonlinear constraints) have the quantum-like representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press, Princeton (1955)

    MATH  Google Scholar 

  2. Gudder, S.P.: Special methods for a generalized probability theory. Trans. Am. Math. Soc. 119, 428 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gudder, S.P.: Axiomatic Quantum Mechanics and Generalized Probability Theory. Academic Press, New York (1970)

    Google Scholar 

  4. Gudder, S.P.: An approach to quantum probability. Quantum Prob. White Noise Anal. 13, 147 (2001)

    MathSciNet  Google Scholar 

  5. Ballentine, L.E.: Interpretations of probability and quantum theory. Quantum Prob. White Noise Anal. 13, 71 (2001)

    MathSciNet  Google Scholar 

  6. Dvurecenskij, A., Pulmanova, O.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  7. Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Int. J. Theor. Phys. 42, 1889–1903 (2003)

    Article  MATH  Google Scholar 

  8. Nánásiová, O., Khrennikov, A.Yu.: Representation theorem of observables on a quantum system. Int. J. Theor. Phys. 45, 469–482 (2006)

    Article  Google Scholar 

  9. Khrennikov, A.: On the representation of contextual probabilistic dynamics in the complex Hilbert space: linear and nonlinear evolutions, Schrödinger dynamics. Nuovo Cimento 120(4), 353–366 (2005)

    MathSciNet  Google Scholar 

  10. Khrennikov, A.: A pre-quantum classical statistical model with infinite-dimensional phase space. J. Phys. A, Math. Gen. 38, 9051–9073 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Khrennikov, A.: The Einstein-Podolsky-Rosen paradox and the p-adic probability theory. Dokl. Math. 54(2), 790–795 (1996)

    MATH  Google Scholar 

  12. Khrennikov, A., Volovich, Ja.I.: Discrete time dynamical models and their quantum-like context-dependent properties. J. Mod. Opt. 51(6/7), 113–114 (2004)

    MathSciNet  Google Scholar 

  13. Khrennikov, A.: Representation of probabilistic data by quantum-like hyperbolic amplitudes. Adv. Appl. Clifford Algebras 20(1), 43–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Allahverdyan, A., Khrennikov, A.Yu., Nieuwenhuizen, Th.M.: Brownian entanglement. Phys. Rev. A 71, 032102-1–032102-14 (2005)

    MathSciNet  ADS  Google Scholar 

  15. Khrennikov, A.Yu.: Interpretations of Probability. VSP, Utrecht (1999); second addition (completed) De Gruyter, Berlin 2009

    MATH  Google Scholar 

  16. Sinha, U., Couteau, C., Medendorp, Z., Sollner, I., Laflamme, R., Sorkin, R., Weihs, G.: Testing Born’s rule in quantum mechanics with a triple slit experiment. Found. Probab. Phys. 5 1101, 200–207 (2009)

    Google Scholar 

  17. Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys. 41, 396–405 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Khrennikov, A.Yu.: Contextual Approach to Quantum Formalism. Fundamental Theories of Physics, vol. 160. Springer, New York (2009)

    Book  MATH  Google Scholar 

  19. Khrennikov, A.Yu.: Quantum-like model of cognitive decision making and information processing. Biosystems 95(3), 179–187 (2009)

    Article  Google Scholar 

  20. Nyman, P.: On consistency of the quantum-like representation algorithm. Int. J. Theor. Phys. 49(1), 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nyman, P.: On consistency of the quantum-like representation algorithm for hyperbolic interference (2010). arXiv:1009.1744

  22. Khrennikov, A.Yu.: Reconstruction of quantum theory on the basis of the formula of total probability (2003). arXiv:quant-ph/0302194

  23. Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994). arXiv:gr-qc/9401003

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Sorkin, R.D.: Quantum measure theory and its interpretation. In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, pp. 229–251. International Press, Cambridge (1997). arXiv:gr-qc/9507057v2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nyman.

Additional information

Research fellowship of Swedish Institute (I. Basieva).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, P., Basieva, I. Quantum-Like Representation Algorithm for Trichotomous Observables. Int J Theor Phys 50, 3864–3881 (2011). https://doi.org/10.1007/s10773-011-0934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0934-4

Keywords

Navigation